Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923211380> ?p ?o ?g. }
- W2923211380 endingPage "2915" @default.
- W2923211380 startingPage "2900" @default.
- W2923211380 abstract "Abstract We present a Bayesian hierarchical space‐time stochastic weather generator (BayGEN) to generate daily precipitation and minimum and maximum temperatures. BayGEN employs a hierarchical framework with data, process, and parameter layers. In the data layer, precipitation occurrence at each site is modeled using probit regression using a spatially distributed latent Gaussian process; precipitation amounts are modeled as gamma random variables; and minimum and maximum temperatures are modeled as realizations from Gaussian processes. The latent Gaussian process that drives the precipitation occurrence process is modeled in the process layer. In the parameter layer, the model parameters of the data and process layers are modeled as spatially distributed Gaussian processes, consequently enabling the simulation of daily weather at arbitrary (unobserved) locations or on a regular grid. All model parameters are endowed with weakly informative prior distributions. The No‐U Turn sampler, an adaptive form of Hamiltonian Monte Carlo, is used to maximize the model likelihood function and obtain posterior samples of each parameter. Posterior samples of the model parameters propagate uncertainty to the weather simulations, an important feature that makes BayGEN unique compared to traditional weather generators. We demonstrate the utility of BayGEN with application to daily weather generation in a basin of the Argentine Pampas. Furthermore, we evaluate the implications of crop yield by driving a crop simulation model with weather simulations from BayGEN and an equivalent non‐Bayesian weather generator." @default.
- W2923211380 created "2019-04-01" @default.
- W2923211380 creator A5003939234 @default.
- W2923211380 creator A5010316565 @default.
- W2923211380 creator A5048221233 @default.
- W2923211380 creator A5082628804 @default.
- W2923211380 creator A5089004731 @default.
- W2923211380 date "2019-04-01" @default.
- W2923211380 modified "2023-10-01" @default.
- W2923211380 title "BayGEN: A Bayesian Space‐Time Stochastic Weather Generator" @default.
- W2923211380 cites W1015906198 @default.
- W2923211380 cites W1594170481 @default.
- W2923211380 cites W1610130559 @default.
- W2923211380 cites W1959677917 @default.
- W2923211380 cites W1964407359 @default.
- W2923211380 cites W1966175964 @default.
- W2923211380 cites W1968382673 @default.
- W2923211380 cites W1969024250 @default.
- W2923211380 cites W1970156874 @default.
- W2923211380 cites W1970220400 @default.
- W2923211380 cites W1970745702 @default.
- W2923211380 cites W1970860420 @default.
- W2923211380 cites W1971222491 @default.
- W2923211380 cites W1984444191 @default.
- W2923211380 cites W1987767514 @default.
- W2923211380 cites W1990779154 @default.
- W2923211380 cites W1995903631 @default.
- W2923211380 cites W1999773891 @default.
- W2923211380 cites W2013765062 @default.
- W2923211380 cites W2014800736 @default.
- W2923211380 cites W2014818218 @default.
- W2923211380 cites W2015975856 @default.
- W2923211380 cites W2017041625 @default.
- W2923211380 cites W2024780423 @default.
- W2923211380 cites W2029156323 @default.
- W2923211380 cites W2031595285 @default.
- W2923211380 cites W2032007905 @default.
- W2923211380 cites W2043383224 @default.
- W2923211380 cites W2047730149 @default.
- W2923211380 cites W2050831818 @default.
- W2923211380 cites W2057035249 @default.
- W2923211380 cites W2058749872 @default.
- W2923211380 cites W2061705743 @default.
- W2923211380 cites W2069626069 @default.
- W2923211380 cites W2071769383 @default.
- W2923211380 cites W2072862088 @default.
- W2923211380 cites W2081097085 @default.
- W2923211380 cites W2083927895 @default.
- W2923211380 cites W2091013014 @default.
- W2923211380 cites W2091206738 @default.
- W2923211380 cites W2094263385 @default.
- W2923211380 cites W2096239328 @default.
- W2923211380 cites W2096945217 @default.
- W2923211380 cites W2103660127 @default.
- W2923211380 cites W2107502191 @default.
- W2923211380 cites W2108767296 @default.
- W2923211380 cites W2114125162 @default.
- W2923211380 cites W2115513183 @default.
- W2923211380 cites W2116481527 @default.
- W2923211380 cites W2124669512 @default.
- W2923211380 cites W2126584287 @default.
- W2923211380 cites W2134496599 @default.
- W2923211380 cites W2138216662 @default.
- W2923211380 cites W2145470713 @default.
- W2923211380 cites W2152230231 @default.
- W2923211380 cites W2156224118 @default.
- W2923211380 cites W2158883105 @default.
- W2923211380 cites W2162433646 @default.
- W2923211380 cites W2164290361 @default.
- W2923211380 cites W2168154506 @default.
- W2923211380 cites W2169713291 @default.
- W2923211380 cites W217238853 @default.
- W2923211380 cites W2200273723 @default.
- W2923211380 cites W2258853289 @default.
- W2923211380 cites W2345676797 @default.
- W2923211380 cites W3123655009 @default.
- W2923211380 cites W4210300258 @default.
- W2923211380 cites W71639756 @default.
- W2923211380 doi "https://doi.org/10.1029/2017wr022473" @default.
- W2923211380 hasPublicationYear "2019" @default.
- W2923211380 type Work @default.
- W2923211380 sameAs 2923211380 @default.
- W2923211380 citedByCount "15" @default.
- W2923211380 countsByYear W29232113802019 @default.
- W2923211380 countsByYear W29232113802020 @default.
- W2923211380 countsByYear W29232113802021 @default.
- W2923211380 countsByYear W29232113802022 @default.
- W2923211380 countsByYear W29232113802023 @default.
- W2923211380 crossrefType "journal-article" @default.
- W2923211380 hasAuthorship W2923211380A5003939234 @default.
- W2923211380 hasAuthorship W2923211380A5010316565 @default.
- W2923211380 hasAuthorship W2923211380A5048221233 @default.
- W2923211380 hasAuthorship W2923211380A5082628804 @default.
- W2923211380 hasAuthorship W2923211380A5089004731 @default.
- W2923211380 hasBestOaLocation W29232113801 @default.
- W2923211380 hasConcept C105795698 @default.
- W2923211380 hasConcept C107054158 @default.
- W2923211380 hasConcept C107673813 @default.