Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923233923> ?p ?o ?g. }
- W2923233923 abstract "Random features provide a practical framework for large-scale kernel approximation and supervised learning. It has been shown that data-dependent sampling of random features using leverage scores can significantly reduce the number of features required to achieve optimal learning bounds. Leverage scores introduce an optimized distribution for features based on an infinite-dimensional integral operator (depending on input distribution), which is impractical to sample from. Focusing on empirical leverage scores in this paper, we establish an out-of-sample performance bound, revealing an interesting trade-off between the approximated kernel and the eigenvalue decay of another kernel in the domain of random features defined based on data distribution. Our experiments verify that the empirical algorithm consistently outperforms vanilla Monte Carlo sampling, and with a minor modification the method is even competitive to supervised data-dependent kernel learning, without using the output (label) information." @default.
- W2923233923 created "2019-04-01" @default.
- W2923233923 creator A5000887049 @default.
- W2923233923 creator A5040922600 @default.
- W2923233923 date "2019-03-20" @default.
- W2923233923 modified "2023-09-27" @default.
- W2923233923 title "On Sampling Random Features From Empirical Leverage Scores: Implementation and Theoretical Guarantees" @default.
- W2923233923 cites W1489867037 @default.
- W2923233923 cites W1551209770 @default.
- W2923233923 cites W1814624729 @default.
- W2923233923 cites W1949476142 @default.
- W2923233923 cites W1988813039 @default.
- W2923233923 cites W2105527258 @default.
- W2923233923 cites W2107791152 @default.
- W2923233923 cites W2118563516 @default.
- W2923233923 cites W2122789001 @default.
- W2923233923 cites W2123395972 @default.
- W2923233923 cites W2137557016 @default.
- W2923233923 cites W2138995291 @default.
- W2923233923 cites W2144902422 @default.
- W2923233923 cites W2160840682 @default.
- W2923233923 cites W2172039283 @default.
- W2923233923 cites W2350220533 @default.
- W2923233923 cites W2401176797 @default.
- W2923233923 cites W2544176167 @default.
- W2923233923 cites W2549898883 @default.
- W2923233923 cites W2579923771 @default.
- W2923233923 cites W2616566795 @default.
- W2923233923 cites W2884243924 @default.
- W2923233923 cites W2891234027 @default.
- W2923233923 cites W2953256123 @default.
- W2923233923 cites W2962840796 @default.
- W2923233923 cites W2963013450 @default.
- W2923233923 cites W2963109538 @default.
- W2923233923 cites W2963121444 @default.
- W2923233923 cites W2963389768 @default.
- W2923233923 cites W2963459001 @default.
- W2923233923 cites W2963473864 @default.
- W2923233923 cites W2963477567 @default.
- W2923233923 cites W2963709899 @default.
- W2923233923 cites W2963942108 @default.
- W2923233923 cites W2964089577 @default.
- W2923233923 cites W2964153027 @default.
- W2923233923 cites W2898071315 @default.
- W2923233923 hasPublicationYear "2019" @default.
- W2923233923 type Work @default.
- W2923233923 sameAs 2923233923 @default.
- W2923233923 citedByCount "6" @default.
- W2923233923 countsByYear W29232339232019 @default.
- W2923233923 countsByYear W29232339232020 @default.
- W2923233923 countsByYear W29232339232021 @default.
- W2923233923 crossrefType "posted-content" @default.
- W2923233923 hasAuthorship W2923233923A5000887049 @default.
- W2923233923 hasAuthorship W2923233923A5040922600 @default.
- W2923233923 hasConcept C105795698 @default.
- W2923233923 hasConcept C11413529 @default.
- W2923233923 hasConcept C118615104 @default.
- W2923233923 hasConcept C119857082 @default.
- W2923233923 hasConcept C122280245 @default.
- W2923233923 hasConcept C12267149 @default.
- W2923233923 hasConcept C126255220 @default.
- W2923233923 hasConcept C134517425 @default.
- W2923233923 hasConcept C153083717 @default.
- W2923233923 hasConcept C154945302 @default.
- W2923233923 hasConcept C167723999 @default.
- W2923233923 hasConcept C19499675 @default.
- W2923233923 hasConcept C33923547 @default.
- W2923233923 hasConcept C41008148 @default.
- W2923233923 hasConcept C74193536 @default.
- W2923233923 hasConceptScore W2923233923C105795698 @default.
- W2923233923 hasConceptScore W2923233923C11413529 @default.
- W2923233923 hasConceptScore W2923233923C118615104 @default.
- W2923233923 hasConceptScore W2923233923C119857082 @default.
- W2923233923 hasConceptScore W2923233923C122280245 @default.
- W2923233923 hasConceptScore W2923233923C12267149 @default.
- W2923233923 hasConceptScore W2923233923C126255220 @default.
- W2923233923 hasConceptScore W2923233923C134517425 @default.
- W2923233923 hasConceptScore W2923233923C153083717 @default.
- W2923233923 hasConceptScore W2923233923C154945302 @default.
- W2923233923 hasConceptScore W2923233923C167723999 @default.
- W2923233923 hasConceptScore W2923233923C19499675 @default.
- W2923233923 hasConceptScore W2923233923C33923547 @default.
- W2923233923 hasConceptScore W2923233923C41008148 @default.
- W2923233923 hasConceptScore W2923233923C74193536 @default.
- W2923233923 hasLocation W29232339231 @default.
- W2923233923 hasOpenAccess W2923233923 @default.
- W2923233923 hasPrimaryLocation W29232339231 @default.
- W2923233923 hasRelatedWork W2059869209 @default.
- W2923233923 hasRelatedWork W2123395972 @default.
- W2923233923 hasRelatedWork W2146574743 @default.
- W2923233923 hasRelatedWork W2353899804 @default.
- W2923233923 hasRelatedWork W2752475006 @default.
- W2923233923 hasRelatedWork W2770734487 @default.
- W2923233923 hasRelatedWork W2891234027 @default.
- W2923233923 hasRelatedWork W2901406704 @default.
- W2923233923 hasRelatedWork W2911894378 @default.
- W2923233923 hasRelatedWork W2950581303 @default.
- W2923233923 hasRelatedWork W2962987628 @default.
- W2923233923 hasRelatedWork W2963013450 @default.
- W2923233923 hasRelatedWork W2963459001 @default.