Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923266918> ?p ?o ?g. }
- W2923266918 endingPage "138" @default.
- W2923266918 startingPage "123" @default.
- W2923266918 abstract "Initially, new nanocomposite reverse osmosis (RO) membranes containing polypyrrole (PPy) coated on multiwalled carbon nanotubes (MWCNTs) were synthesized. Then, the synthesized membranes were prepared to model flux measurements using artificial neural networks (ANNs). Raw and oxidized MWCNTs were coated with the polypyrrole and then various amounts of them were mixed in m-phenylene diamine solution to prepare polyamide RO membranes using the interfacial polymerization method. The contact angle, surface morphology, surface roughness, salt rejection, water flux and fouling efficiency were investigated. Based on the results, water flux and fouling performance were enhanced. For both the raw and oxidized MWCNTs-PPy blended membranes, water flux increased from 21.5 to 30.4 and 34.3 L/m2 h, respectively. Also, antifouling properties were improved by embedding the polypyrrole nanocomposites particularly in 0.002 wt% oxidized MWCNTs-PPy membrane. Using ANNs, the water flux measurements were modeled with input parameters including temperature (temp °C), trans-membrane pressure (TMP), time (h) and MWCNTs-PPy concentration (raw and oxidized). According to the modeling data, Mean square error was minimized and correlation coefficient was higher than 97%." @default.
- W2923266918 created "2019-04-01" @default.
- W2923266918 creator A5002387823 @default.
- W2923266918 creator A5010112407 @default.
- W2923266918 creator A5042583892 @default.
- W2923266918 date "2019-07-01" @default.
- W2923266918 modified "2023-10-17" @default.
- W2923266918 title "Simulation and characterization of novel reverse osmosis membrane prepared by blending polypyrrole coated multiwalled carbon nanotubes for brackish water desalination and antifouling properties using artificial neural networks" @default.
- W2923266918 cites W1412592561 @default.
- W2923266918 cites W1965766173 @default.
- W2923266918 cites W1969406617 @default.
- W2923266918 cites W1978478886 @default.
- W2923266918 cites W1980052614 @default.
- W2923266918 cites W1981907403 @default.
- W2923266918 cites W1982194355 @default.
- W2923266918 cites W1987651068 @default.
- W2923266918 cites W1993421988 @default.
- W2923266918 cites W2010025692 @default.
- W2923266918 cites W2011582215 @default.
- W2923266918 cites W2025690327 @default.
- W2923266918 cites W2038062083 @default.
- W2923266918 cites W2045492376 @default.
- W2923266918 cites W2047302461 @default.
- W2923266918 cites W2053982361 @default.
- W2923266918 cites W2054478018 @default.
- W2923266918 cites W2060133565 @default.
- W2923266918 cites W2066718448 @default.
- W2923266918 cites W2067875097 @default.
- W2923266918 cites W2070066818 @default.
- W2923266918 cites W2070340607 @default.
- W2923266918 cites W2071651272 @default.
- W2923266918 cites W2072274571 @default.
- W2923266918 cites W2078345755 @default.
- W2923266918 cites W2080179375 @default.
- W2923266918 cites W2083149949 @default.
- W2923266918 cites W2085320052 @default.
- W2923266918 cites W2094833847 @default.
- W2923266918 cites W2098569434 @default.
- W2923266918 cites W2111243341 @default.
- W2923266918 cites W2117950210 @default.
- W2923266918 cites W2139205524 @default.
- W2923266918 cites W2141374763 @default.
- W2923266918 cites W2157330721 @default.
- W2923266918 cites W2207738315 @default.
- W2923266918 cites W2211638415 @default.
- W2923266918 cites W2253128157 @default.
- W2923266918 cites W2293547841 @default.
- W2923266918 cites W2326888973 @default.
- W2923266918 cites W2327386259 @default.
- W2923266918 cites W2345579945 @default.
- W2923266918 cites W2384591942 @default.
- W2923266918 cites W2399220947 @default.
- W2923266918 cites W2408663295 @default.
- W2923266918 cites W2420359377 @default.
- W2923266918 cites W2433913043 @default.
- W2923266918 cites W2463963925 @default.
- W2923266918 cites W2466599518 @default.
- W2923266918 cites W2468678131 @default.
- W2923266918 cites W2474753671 @default.
- W2923266918 cites W2553574693 @default.
- W2923266918 cites W2585544322 @default.
- W2923266918 cites W2604461068 @default.
- W2923266918 cites W2609060881 @default.
- W2923266918 cites W2623469371 @default.
- W2923266918 cites W2624751796 @default.
- W2923266918 cites W2794618246 @default.
- W2923266918 doi "https://doi.org/10.1016/j.memsci.2019.03.050" @default.
- W2923266918 hasPublicationYear "2019" @default.
- W2923266918 type Work @default.
- W2923266918 sameAs 2923266918 @default.
- W2923266918 citedByCount "40" @default.
- W2923266918 countsByYear W29232669182020 @default.
- W2923266918 countsByYear W29232669182021 @default.
- W2923266918 countsByYear W29232669182022 @default.
- W2923266918 countsByYear W29232669182023 @default.
- W2923266918 crossrefType "journal-article" @default.
- W2923266918 hasAuthorship W2923266918A5002387823 @default.
- W2923266918 hasAuthorship W2923266918A5010112407 @default.
- W2923266918 hasAuthorship W2923266918A5042583892 @default.
- W2923266918 hasConcept C115792997 @default.
- W2923266918 hasConcept C127413603 @default.
- W2923266918 hasConcept C130797344 @default.
- W2923266918 hasConcept C159985019 @default.
- W2923266918 hasConcept C166940927 @default.
- W2923266918 hasConcept C185592680 @default.
- W2923266918 hasConcept C188027245 @default.
- W2923266918 hasConcept C190399342 @default.
- W2923266918 hasConcept C192562407 @default.
- W2923266918 hasConcept C2776870568 @default.
- W2923266918 hasConcept C2777232022 @default.
- W2923266918 hasConcept C2780861853 @default.
- W2923266918 hasConcept C41625074 @default.
- W2923266918 hasConcept C42360764 @default.
- W2923266918 hasConcept C44228677 @default.
- W2923266918 hasConcept C521977710 @default.
- W2923266918 hasConcept C55493867 @default.
- W2923266918 hasConcept C92880739 @default.
- W2923266918 hasConceptScore W2923266918C115792997 @default.