Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923304294> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2923304294 abstract "In a recent article,1 the authors reported calculations of the exciton binding energy in the orthorhombic phase (OP) of MAPbI3. They solved the exciton effective mass equation, using electron–hole interaction potentials screened by a distance-dependent dielectric function, originally proposed by Pollmann and Büttner (PB)2 and Haken (H).3 They obtained binding energies of 24 meV (PB) and 37 meV (H), the first of which is in reasonable agreement with the experimental value of 16–19 meV.4, 5 However, a bug in the computer code was discovered, upon which the corrected exciton binding energy was found to be only ≈3.7 meV for the PB model. This value is significantly smaller than the experimental binding energy, questioning the applicability of the PB model for MAPbI3. Nevertheless, the experimental binding energies can be reproduced by the calculations by adjusting the effective LO phonon energy ELO. This parameter, taken as 38.5 meV (≡311 cm−1) in Ref. 1, was the only parameter not obtained from ab initio calculations. Figure 1 shows the corrected binding energy (Ex) as a function of ELO. Also shown is the experimental value from Phuong et al.,6 and the value calculated by Yu7 with the H model, using slightly different effective masses. The vertical lines indicate infrared absorption frequencies identified by Grechko et al.8 It can be appreciated that the experimental binding energies (12–19 meV)4-6 can be reproduced with different values of ELO for each model. For the PB model, the range 32–63 cm−1 seems appropriate, in coincidence with the frequencies of ref. 8. This range of frequencies is within the band located at 0–120 cm−1, associated with the vibrations of the PbI3 sublattice.9 Optically active phonon modes in this band have been identified by density functional theory calculations,[10–13] Raman scattering,12, 13 and infrared absorption.8 In particular, Perez-Osorio et al.11 identified two groups of normal modes in the ranges 31–35 cm−1, and 53–62 cm−1, that contribute strongly to the static permittivity. On the other hand, the H model predicts exciton binding energies in agreement with experiments for E L O ≈ 16 meV (≡129 cm−1). Phuong et al.,6 by means of photocurrent measurements, determined an exciton binding energy of 12.4 meV, and an effective phonon energy E L O ≈ 16.1 meV. Nagai et al.14, by means of terahertz reflection spectroscopy, identified peaks at 33, 71, 82, 95, 103, and 161 cm−1. They fitted the inverse dielectric function with an effective one-phonon LO frequency of 131 cm−1, in close agreement with ref. 6. It is not clear why the H and PB models predict such different exciton binding energies, considering that the PB model was proposed as an improvement over the H model. Both models can reproduce the experimental values of the exciton binding energy in MAPbI3, provided that the appropriate LO phonon energy is selected. In both cases, the LO phonon energy can be matched with certain experimentally identified vibrations. Let us comment on the scattering of experimental binding energies (12–19 meV). This can attributed to differences in the time scale inherent to each experimental technique, and to variations in exciton lifetime. Melissen et al.10 have discussed the relationship between exciton lifetime and the effectiveness of the vibration modes to screen the electron-hole interaction. Vibrations with a period larger than the exciton lifetime cannot contribute to its dielectric screening. Therefore, the largest exciton lifetimes may correspond to the smallest binding energies, thanks to lower frequency normal modes contributing to the dielectric constant. The exciton lifetime depends not only on the MAPbI3 quality, but also on the presence of interfaces where excitons can dissociate. The H and PB models provide approximate stationary solutions of the exciton–LO-phonon system, being appropriate when the other interactions that limit the exciton lifetime are much weaker than electron–hole, electron–LO-phonon, and hole–LO-phonon couplings. In contrast, in the Wannier–Mott exciton model, a strong Coulomb electron–hole interaction is assumed, along with weak interactions with the rest of the system, including the LO phonons." @default.
- W2923304294 created "2019-04-01" @default.
- W2923304294 creator A5011211173 @default.
- W2923304294 creator A5033891884 @default.
- W2923304294 creator A5083035625 @default.
- W2923304294 creator A5085523713 @default.
- W2923304294 date "2019-03-26" @default.
- W2923304294 modified "2023-10-17" @default.
- W2923304294 title "Erratum to: Nonhydrogenic Exciton Spectrum in Perovskite CH 3 NH 3 PbI 3 (Phys. Status Solidi RRL 2015, 9 , 559–563)" @default.
- W2923304294 cites W1696825759 @default.
- W2923304294 cites W1993754943 @default.
- W2923304294 cites W1996228132 @default.
- W2923304294 cites W2071021518 @default.
- W2923304294 cites W2120185412 @default.
- W2923304294 cites W2222486254 @default.
- W2923304294 cites W2226421194 @default.
- W2923304294 cites W2550042913 @default.
- W2923304294 cites W2580566075 @default.
- W2923304294 cites W2809512561 @default.
- W2923304294 cites W2890105288 @default.
- W2923304294 cites W2890584981 @default.
- W2923304294 cites W2897282424 @default.
- W2923304294 cites W3098267667 @default.
- W2923304294 doi "https://doi.org/10.1002/pssr.201900075" @default.
- W2923304294 hasPublicationYear "2019" @default.
- W2923304294 type Work @default.
- W2923304294 sameAs 2923304294 @default.
- W2923304294 citedByCount "1" @default.
- W2923304294 countsByYear W29233042942022 @default.
- W2923304294 crossrefType "journal-article" @default.
- W2923304294 hasAuthorship W2923304294A5011211173 @default.
- W2923304294 hasAuthorship W2923304294A5033891884 @default.
- W2923304294 hasAuthorship W2923304294A5083035625 @default.
- W2923304294 hasAuthorship W2923304294A5085523713 @default.
- W2923304294 hasBestOaLocation W29233042941 @default.
- W2923304294 hasConcept C121332964 @default.
- W2923304294 hasConcept C133386390 @default.
- W2923304294 hasConcept C155011858 @default.
- W2923304294 hasConcept C17729963 @default.
- W2923304294 hasConcept C184779094 @default.
- W2923304294 hasConcept C185592680 @default.
- W2923304294 hasConcept C186370098 @default.
- W2923304294 hasConcept C207114421 @default.
- W2923304294 hasConcept C26873012 @default.
- W2923304294 hasConcept C2988029435 @default.
- W2923304294 hasConcept C37243968 @default.
- W2923304294 hasConcept C62520636 @default.
- W2923304294 hasConcept C8010536 @default.
- W2923304294 hasConcept C93282013 @default.
- W2923304294 hasConceptScore W2923304294C121332964 @default.
- W2923304294 hasConceptScore W2923304294C133386390 @default.
- W2923304294 hasConceptScore W2923304294C155011858 @default.
- W2923304294 hasConceptScore W2923304294C17729963 @default.
- W2923304294 hasConceptScore W2923304294C184779094 @default.
- W2923304294 hasConceptScore W2923304294C185592680 @default.
- W2923304294 hasConceptScore W2923304294C186370098 @default.
- W2923304294 hasConceptScore W2923304294C207114421 @default.
- W2923304294 hasConceptScore W2923304294C26873012 @default.
- W2923304294 hasConceptScore W2923304294C2988029435 @default.
- W2923304294 hasConceptScore W2923304294C37243968 @default.
- W2923304294 hasConceptScore W2923304294C62520636 @default.
- W2923304294 hasConceptScore W2923304294C8010536 @default.
- W2923304294 hasConceptScore W2923304294C93282013 @default.
- W2923304294 hasIssue "5" @default.
- W2923304294 hasLocation W29233042941 @default.
- W2923304294 hasOpenAccess W2923304294 @default.
- W2923304294 hasPrimaryLocation W29233042941 @default.
- W2923304294 hasRelatedWork W2041627707 @default.
- W2923304294 hasRelatedWork W2043115191 @default.
- W2923304294 hasRelatedWork W2093500893 @default.
- W2923304294 hasRelatedWork W2731668957 @default.
- W2923304294 hasRelatedWork W2961591247 @default.
- W2923304294 hasRelatedWork W2970051833 @default.
- W2923304294 hasRelatedWork W2980403462 @default.
- W2923304294 hasRelatedWork W2986932746 @default.
- W2923304294 hasRelatedWork W3101684822 @default.
- W2923304294 hasRelatedWork W3208367859 @default.
- W2923304294 hasVolume "13" @default.
- W2923304294 isParatext "false" @default.
- W2923304294 isRetracted "false" @default.
- W2923304294 magId "2923304294" @default.
- W2923304294 workType "erratum" @default.