Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923485456> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2923485456 abstract "With the advancement in technology and the increase in the number of digital sources, data quantity increases every day and, consequently, the cyber security related data quantity. Traditional security systems such as Intrusion Detection Systems (IDS) are not capable of handling such a growing amount of data set in real time. Cyber security analytics is an alternative solution to such traditional security systems, which can use big data analytics techniques to provide a faster and scalable framework to handle a large amount of cyber security related data in real time. k-means clustering is one of the commonly used clustering algorithms in cyber security analytics aimed at dividing security related data into groups of similar entities, which in turn can help in gaining important insights about the known and unknown attack patterns. This technique helps a security analyst to focus on the data specific to some clusters only for the analysis. To improve performance, k-means can exploit the triangle inequality to skip many point-center distance computations, without affecting the clustering results. In this paper, we re-formulate the parallel version of Elkan's k-means with triangle inequality (k-meansTI) algorithm, implement this algorithm on Apache Spark, and use it to classify Web attacks in different clusters. The paper also provides the speed comparison of our parallel k-meansTI on Spark with the Spark ML k-means clustering algorithm." @default.
- W2923485456 created "2019-04-01" @default.
- W2923485456 creator A5026134531 @default.
- W2923485456 creator A5070972527 @default.
- W2923485456 date "2019-03-13" @default.
- W2923485456 modified "2023-09-25" @default.
- W2923485456 title "Efficientk-means Using Triangle Inequality on Spark for Cyber Security Analytics" @default.
- W2923485456 cites W1123101191 @default.
- W2923485456 cites W118481696 @default.
- W2923485456 cites W1530232144 @default.
- W2923485456 cites W1987971958 @default.
- W2923485456 cites W1988616232 @default.
- W2923485456 cites W2006288015 @default.
- W2923485456 cites W2055480424 @default.
- W2923485456 cites W2108399535 @default.
- W2923485456 cites W2116762767 @default.
- W2923485456 cites W2121910516 @default.
- W2923485456 cites W2795044518 @default.
- W2923485456 cites W2888830644 @default.
- W2923485456 cites W3122864121 @default.
- W2923485456 doi "https://doi.org/10.1145/3309182.3309187" @default.
- W2923485456 hasPublicationYear "2019" @default.
- W2923485456 type Work @default.
- W2923485456 sameAs 2923485456 @default.
- W2923485456 citedByCount "8" @default.
- W2923485456 countsByYear W29234854562019 @default.
- W2923485456 countsByYear W29234854562020 @default.
- W2923485456 countsByYear W29234854562021 @default.
- W2923485456 countsByYear W29234854562022 @default.
- W2923485456 countsByYear W29234854562023 @default.
- W2923485456 crossrefType "proceedings-article" @default.
- W2923485456 hasAuthorship W2923485456A5026134531 @default.
- W2923485456 hasAuthorship W2923485456A5070972527 @default.
- W2923485456 hasConcept C134306372 @default.
- W2923485456 hasConcept C199360897 @default.
- W2923485456 hasConcept C2522767166 @default.
- W2923485456 hasConcept C2781215313 @default.
- W2923485456 hasConcept C33923547 @default.
- W2923485456 hasConcept C38652104 @default.
- W2923485456 hasConcept C41008148 @default.
- W2923485456 hasConcept C45555294 @default.
- W2923485456 hasConcept C79158427 @default.
- W2923485456 hasConceptScore W2923485456C134306372 @default.
- W2923485456 hasConceptScore W2923485456C199360897 @default.
- W2923485456 hasConceptScore W2923485456C2522767166 @default.
- W2923485456 hasConceptScore W2923485456C2781215313 @default.
- W2923485456 hasConceptScore W2923485456C33923547 @default.
- W2923485456 hasConceptScore W2923485456C38652104 @default.
- W2923485456 hasConceptScore W2923485456C41008148 @default.
- W2923485456 hasConceptScore W2923485456C45555294 @default.
- W2923485456 hasConceptScore W2923485456C79158427 @default.
- W2923485456 hasLocation W29234854561 @default.
- W2923485456 hasOpenAccess W2923485456 @default.
- W2923485456 hasPrimaryLocation W29234854561 @default.
- W2923485456 hasRelatedWork W2498778289 @default.
- W2923485456 hasRelatedWork W2499073664 @default.
- W2923485456 hasRelatedWork W2752106475 @default.
- W2923485456 hasRelatedWork W2769430831 @default.
- W2923485456 hasRelatedWork W2944988209 @default.
- W2923485456 hasRelatedWork W2993053943 @default.
- W2923485456 hasRelatedWork W3171536469 @default.
- W2923485456 hasRelatedWork W3177086633 @default.
- W2923485456 hasRelatedWork W3180094802 @default.
- W2923485456 hasRelatedWork W4226411239 @default.
- W2923485456 isParatext "false" @default.
- W2923485456 isRetracted "false" @default.
- W2923485456 magId "2923485456" @default.
- W2923485456 workType "article" @default.