Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923604003> ?p ?o ?g. }
- W2923604003 endingPage "L825" @default.
- W2923604003 startingPage "L822" @default.
- W2923604003 abstract "EditorialSenescence in the LungSenescence in the lung: is this getting old?Rory E. Morty and Y. S. PrakashRory E. MortyDepartment of Internal Medicine, Justus-Liebig-Universität Gießen, Giessen, GermanyDepartment of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany and Y. S. PrakashDepartment of Anesthesiology, Mayo Clinic, Rochester, MinnesotaDepartment of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MinnesotaPublished Online:01 May 2019https://doi.org/10.1152/ajplung.00081.2019This is the final version - click for previous versionMoreSectionsPDF (104 KB)Download PDF ToolsExport citationAdd to favoritesGet permissionsTrack citations ShareShare onFacebookTwitterLinkedInWeChat With the proportion of individuals in the United States >65 yr reaching ~25% by 2050 (22, 58), the effects of aging on any organ system are of increasing clinical and research importance in the context of healthy aging and longevity. With age itself a risk factor for several chronic medical conditions, an understanding of the mechanisms at the intersection of aging biology and disease susceptibility also becomes important. In this regard, the lung is a critical organ, given increasing morbidity and mortality attributable to chronic lung diseases in the elderly. For example, chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and shows increasing prevalence particularly in the elderly, who also happen to be at highest risk, while there is increasing evidence that hallmarks of aging are also present prominently in COPD (9, 39, 44). In genetically susceptible aging individuals, environmental risk factors lead to pulmonary fibrosis (PF), manifesting primarily in the middle-aged and especially in the elderly (27, 35, 43, 49). Many hallmarks of aging also occur prematurely in PF (3, 36, 40, 49, 55). Furthermore, there is increasing recognition that asthma is also increasing in the elderly (AIE) with ~7% prevalence, associated with higher rates of airway hyperreactivity, more severe presentation, resistance to standard therapy, and greater morbidity and mortality (8, 20, 23, 48, 55–57). Older patients are also at significantly higher risk of developing acute respiratory distress syndrome (ARDS) compared with younger patients (28) while pulmonary hypertension (PH), which is increasingly recognized in the elderly, is associated with greater morbidity and mortality (45). Interestingly, with improved care, longer survival of patients with cystic fibrosis has necessitated an understanding of the links between aging and CF (16, 51). However, across these chronic lung diseases, diagnosis and management are complicated by a paucity of information regarding normal aging-related structural and functional changes, the influence of genetics, and the likely myriad of mechanisms that contribute to aging-related changes in the lung (36, 50, 52, 62). Added are interactions with life events such as puberty, pregnancy, and menopause, comorbid conditions that impact the lung (e.g., inflammation and inflammatory disease, cardiovascular diseases), and environmental and iatrogenic exposures (e.g., tobacco smoke, pollution, allergens, radiation and chemotherapy in cancer), many of which are prolonged and more complex in older individuals. Furthermore, many of these same factors are also important players in lung disease pathogenesis, making it critical to separate aging-related factors from exposure effects. Indeed, it is now recognized that even early life events contribute to lifelong disease, and thus it may not be just the adult lifespan that should be explored. Despite these complex issues, certain mechanisms regulating normal versus abnormal cellular structure and function could broadly contribute to lung growth and aging, as well as to disease pathogenesis. In this regard, emerging studies highlight the importance of cellular senescence in the lung and the contribution of senescent cells in aging, and in diseases including COPD (4, 5, 7), PF (47, 59), CF (6, 18), ARDS (38), and asthma (21, 61).Cellular senescence is most commonly associated with biological aging (12, 13, 31, 53), and there has been much excitement regarding understanding and targeting of senescence pathways with a goal towards blunting their (detrimental) effects and improving the healthspan of the elderly (29, 30, 37), i.e., lifespan free from pain, disability, and dependence. Senescence occurs in response to a variety of insults across a range of cell types (12, 15, 54, 60) and may represent a normal, protective response. However, accumulation of senescent cells has been observed in vivo in relation to chronological aging (17, 26), chemotherapy and radiotherapy (46), supplemental oxygen (33, 41), and cigarette smoke (2) to name a few. Indeed, emerging data suggest that insults such as hyperoxia can induce senescence in developing lung (41), dissociating aging per se from senescence.Senescent cells have been reported in both human and animal models of pulmonary diseases (1, 4, 19, 21, 24, 25, 34, 42, 47, 59, 61, 63). What is less clear is the extent to which phenotypic changes associated with normal chronological aging or in disease states are mechanistically attributable to cellular senescence or effects of senescent cells per se, i.e., how important are senescent cells in pathophysiology? Furthermore, it is important to recognize that senescence is in fact a normal, protective, and responsive process throughout life including in the fetal state, helping to coordinate development, growth, and repair (11), and thus it becomes important to appreciate when and how senescence becomes detrimental in the context of disease per se. Beyond senescent cells, it is also becoming clear that their effects are mediated through the senescence-associated secretory profile (SASP), a set of secreted factors that influence surrounding naive cells.Thus, it is likely that on the one hand, normal physiological processes throughout life and external insults induce senescence, while conversely, senescent cells (via SASP) can induce and promote normal growth and repair or induce and promote disease, overall creating a feed-forward system [as highlighted in a recent review on cellular senescence in the lung (42)]. Accordingly, it becomes important to understand the contributions of senescence to development, aging, and disease, and if significant, the processes that lead to enhanced senescent cell burden and downstream detrimental effects. Such a task will then inform the need to determine whether current or future therapies targeting disease states should be evaluated in the context of their ability to reduce senescent cell burden [i.e., senolytic drug therapies (14, 31, 32)] or the influence of senescent cells per se. However, within this framework, we also need to understand the importance of cell type, context, and even age versus aging in the roles of senescence.The importance of identifying processes that lie at the intersection of aging biology and lung disease pathogenesis was recently recognized by the National Institute of Aging and the National Heart, Lung, and Blood Institute joint workshop entitled “The Intersection of Aging Biology and Pathobiology of Lung Diseases” (10). From the several common themes that emerged, some are notable: 1) the need for better understanding of age-related changes that develop in lungs of model organisms and humans using an interdisciplinary approach; 2) research towards identifying how molecular changes that occur with aging alter responses to stress in the lung, including senescence, unfolded protein response, mitochondrial dysfunction etc.; 3) importance of developing new models of lung diseases with age as a strong risk factor including COPD and PF. While these issues are not necessarily comprehensive, we believe that the lung community is ideally situated to highlight new scientific advances in our current understanding of these critical and timely concepts, helping to identify the role(s) and importance of senescence and the contribution of senescent cells to both normal lung aging, and lung disease pathophysiology. Thus, we encourage the readership of American Journal of Physiology–Lung Cellular and Molecular Physiology to consider this a call for exciting research in the area of senescence in the lung. Some important questions to consider within this context include the following.1) What is the senescent profile within different cell types of the lung with aging?2) When does senescence start in the lung? i.e., is cellular senescence important early in life, and does it contribute to childhood lung disease as well? How does this impact disease pathogenesis and how does disease state change with age/aging? Do different lung diseases involving senescence or senescent cell effects reflect a similar phenotype and follow similar pathways and patterns with age? Should we be thinking of senolytic therapy in age-specific fashion as well?3) How distinct are senescent cells from the native cells and what are their transcriptomic and proteomic profiles? Indeed, how do we identify and differentiate senescent cells?4) What are the key senescence pathways and what is the heterogeneity of SASP profiles within each lung cell type (including inflammatory cells)?5) Are there sex differences in lung senescence biology?6) What are the interactions between established or emerging lung disease mechanisms such as inflammation, reactive oxygen species, or mitochondria (for example), and senescence pathways?7) Certainly many of the SASP factors are cytokines highly relevant to inflammatory airway disease but compared with COPD or PF, less is known regarding senescent cell burden or the role of such cells or SASP in asthma. Thus the question becomes where senescence lies in the induction or progression of asthma, and which cells are involved: inflammatory cells versus resident airway cells including epithelium and smooth muscle.8) If senescence is part of aging biology, what are the key features of senescent cells that drive the “good” versus the “bad” in contributing to lung diseases of aging?9) What is the impact of potential senolytic drugs in lung? In this regard, if age and aging are important aspects in the burden and effects of senescent cells, how should age-specific patterning of senolytic therapy be designed, made all the more relevant recognizing the lack of elderly patients in clinical trials?We believe that basic, translational, and clinical research relevant to the above topics holds substantial potential towards understanding and evaluating beneficial versus detrimental contribution of cellular senescence, thus highlighting novel therapeutic avenues for lung diseases across the age spectrum.GRANTSThis work was supported by the Mayo Clinic Center for Biomedical Discovery and National Heart, Lung, and Blood Institute Grant R01 HL056470.DISCLOSURESNo conflicts of interest, financial or otherwise, are declared by the authors.AUTHOR CONTRIBUTIONSR.M. and Y.S.P. drafted manuscript; edited and revised manuscript; and approved final version of manuscript.REFERENCES1. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15: 978–990, 2013. doi:10.1038/ncb2784. Crossref | PubMed | ISI | Google Scholar2. Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H, Rahman I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J 29: 2912–2929, 2015. doi:10.1096/fj.14-268276. Crossref | PubMed | ISI | Google Scholar3. Álvarez D, Cárdenes N, Sellarés J, Bueno M, Corey C, Hanumanthu VS, Peng Y, D’Cunha H, Sembrat J, Nouraie M, Shanker S, Caufield C, Shiva S, Armanios M, Mora AL, Rojas M. IPF lung fibroblasts have a senescent phenotype. Am J Physiol Lung Cell Mol Physiol 313: L1164–L1173, 2017. doi:10.1152/ajplung.00220.2017. Link | ISI | Google Scholar4. Antony VB, Thannickal VJ. Cellular senescence in chronic obstructive pulmonary disease: multifaceted and multifunctional. Am J Respir Cell Mol Biol 59: 135–136, 2018. doi:10.1165/rcmb.2018-0061ED. Crossref | PubMed | ISI | Google Scholar5. Barnes PJ. Senescence in COPD and its comorbidities. Annu Rev Physiol 79: 517–539, 2017. doi:10.1146/annurev-physiol-022516-034314. Crossref | PubMed | ISI | Google Scholar6. Bezzerri V, Piacenza F, Caporelli N, Malavolta M, Provinciali M, Cipolli M. Is cellular senescence involved in cystic fibrosis? Respir Res 20: 32, 2019. doi:10.1186/s12931-019-0993-2. Crossref | PubMed | ISI | Google Scholar7. Birch J, Barnes PJ, Passos JF. Mitochondria, telomeres and cell senescence: implications for lung ageing and disease. Pharmacol Ther 183: 34–49, 2018. doi:10.1016/j.pharmthera.2017.10.005. Crossref | PubMed | ISI | Google Scholar8. Braman SS. Asthma in the elderly. Clin Geriatr Med 33: 523–537, 2017. doi:10.1016/j.cger.2017.06.005. Crossref | PubMed | ISI | Google Scholar9. Brandsma CA, de Vries M, Costa R, Woldhuis RR, Königshoff M, Timens W. Lung ageing and COPD: is there a role for ageing in abnormal tissue repair? Eur Respir Rev 26: 170073, 2017. doi:10.1183/16000617.0073-2017. Crossref | PubMed | ISI | Google Scholar10. Budinger GRS, Kohanski RA, Gan W, Kobor MS, Amaral LA, Armanios M, Kelsey KT, Pardo A, Tuder R, Macian F, Chandel N, Vaughan D, Rojas M, Mora AL, Kovacs E, Duncan SR, Finkel T, Choi A, Eickelberg O, Chen D, Agusti A, Selman M, Balch WE, Busse P, Lin A, Morimoto R, Sznajder JI, Thannickal VJ. The intersection of aging biology and the pathobiology of lung diseases: a joint NHLBI/NIA workshop. J Gerontol A Biol Sci Med Sci 72: 1492–1500, 2017. doi:10.1093/gerona/glx090. Crossref | PubMed | ISI | Google Scholar11. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol Rev 99: 1047–1078, 2019. doi:10.1152/physrev.00020.2018. Link | ISI | Google Scholar12. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol 75: 685–705, 2013. doi:10.1146/annurev-physiol-030212-183653. Crossref | PubMed | ISI | Google Scholar13. Campisi J. Cellular senescence and lung function during aging. Yin and yang. Ann Am Thorac Soc 13, Suppl 5: S402–S406, 2016. doi:10.1513/AnnalsATS.201609-703AW. Crossref | PubMed | ISI | Google Scholar14. Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16: 718–735, 2017. doi:10.1038/nrd.2017.116. Crossref | PubMed | ISI | Google Scholar15. Childs BG, Li H, van Deursen JM. Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest 128: 1217–1228, 2018. doi:10.1172/JCI95146. Crossref | PubMed | ISI | Google Scholar16. Chiron R, Caimmi D, Valiulis A, Durieu I, Tejedor P, Le Cam Y, Boudes M, Jonquet O, Strandberg T, Michel JP, de Manuel Keenoy E, Demoly P, Mercier J, Bourret R, Bousquet J; MACVIA-LR European Innovation Partnership on Active and Healthy Ageing Reference Site. A model for active and healthy ageing with a rare genetic disease: cystic fibrosis. Eur Respir J 47: 714–719, 2016. doi:10.1183/13993003.01237-2015. Crossref | PubMed | ISI | Google Scholar17. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367, 1995. doi:10.1073/pnas.92.20.9363. Crossref | PubMed | ISI | Google Scholar18. Fischer BM, Wong JK, Degan S, Kummarapurugu AB, Zheng S, Haridass P, Voynow JA. Increased expression of senescence markers in cystic fibrosis airways. Am J Physiol Lung Cell Mol Physiol 304: L394–L400, 2013. doi:10.1152/ajplung.00091.2012. Link | ISI | Google Scholar19. Gao N, Wang Y, Zheng CM, Gao YL, Li H, Li Y, Fu TT, Xu LL, Wang W, Ying S, Huang K. β2-Microglobulin participates in development of lung emphysema by inducing lung epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol 312: L669–L677, 2017. doi:10.1152/ajplung.00516.2016. Link | ISI | Google Scholar20. Gibson PG, McDonald VM, Marks GB. Asthma in older adults. Lancet 376: 803–813, 2010. doi:10.1016/S0140-6736(10)61087-2. Crossref | PubMed | ISI | Google Scholar21. Hadj Salem I, Dubé J, Boulet LP, Chakir J. Telomere shortening correlates with accelerated replicative senescence of bronchial fibroblasts in asthma. Clin Exp Allergy 45: 1713–1715, 2015. doi:10.1111/cea.12611. Crossref | PubMed | ISI | Google Scholar22. Hadley EC, Kuchel GA, Newman AB, Allore HG, Bartley JM, Bergeman CS, Blinov ML, Colon-Emeric CS, Dabhar FS, Dugan LL, Dutta C, Eldadah BA, Ferrucci L, Kirkland JL, Kritchevsky SB, Lipsitz LA, Nadkarni NK, Reed MJ, Schmader KE, Sierra F, Studenski SA, Varadhan R, Walston JD, Whitson HE, Yung R; Workshop Speakers and Participants. Report: NIA Workshop on Measures of Physiologic Resiliencies in Human Aging. J Gerontol A Biol Sci Med Sci 72: 980–990, 2017. doi:10.1093/gerona/glx015. Crossref | PubMed | ISI | Google Scholar23. Hanania NA, King MJ, Braman SS, Saltoun C, Wise RA, Enright P, Falsey AR, Mathur SK, Ramsdell JW, Rogers L, Stempel DA, Lima JJ, Fish JE, Wilson SR, Boyd C, Patel KV, Irvin CG, Yawn BP, Halm EA, Wasserman SI, Sands MF, Ershler WB, Ledford DK; Asthma in Elderly workshop participants. Asthma in the elderly: current understanding and future research needs–a report of a National Institute on Aging (NIA) workshop. J Allergy Clin Immunol 128, Suppl: S4–S24, 2011. doi:10.1016/j.jaci.2011.06.048. Crossref | PubMed | ISI | Google Scholar24. Hecker L. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol Lung Cell Mol Physiol 314: L642–L653, 2018. doi:10.1152/ajplung.00275.2017. Link | ISI | Google Scholar25. Heinzelmann K, Lehmann M, Gerckens M, Noskovičová N, Frankenberger M, Lindner M, Hatz R, Behr J, Hilgendorff A, Königshoff M, Eickelberg O. Cell-surface phenotyping identifies CD36 and CD97 as novel markers of fibroblast quiescence in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 315: L682–L696, 2018. doi:10.1152/ajplung.00439.2017. Link | ISI | Google Scholar26. Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U. Accumulation of senescent cells in mitotic tissue of aging Primates. Mech Ageing Dev 128: 36–44, 2007. doi:10.1016/j.mad.2006.11.008. Crossref | PubMed | ISI | Google Scholar27. Jo HE, Randhawa S, Corte TJ, Moodley Y. Idiopathic pulmonary fibrosis and the elderly: diagnosis and management considerations. Drugs Aging 33: 321–334, 2016. doi:10.1007/s40266-016-0366-1. Crossref | PubMed | ISI | Google Scholar28. Johnston CJ, Rubenfeld GD, Hudson LD. Effect of age on the development of ARDS in trauma patients. Chest 124: 653–659, 2003. doi:10.1378/chest.124.2.653. Crossref | PubMed | ISI | Google Scholar29. Kirkland JL. Translating advances from the basic biology of aging into clinical application. Exp Gerontol 48: 1–5, 2013. doi:10.1016/j.exger.2012.11.014. Crossref | PubMed | ISI | Google Scholar30. Kirkland JL, Peterson C. Healthspan, translation, and new outcomes for animal studies of aging. J Gerontol A Biol Sci Med Sci 64: 209–212, 2009. doi:10.1093/gerona/gln063. Crossref | PubMed | ISI | Google Scholar31. Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine 21: 21–28, 2017. doi:10.1016/j.ebiom.2017.04.013. Crossref | PubMed | ISI | Google Scholar32. Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Geriatr Soc 65: 2297–2301, 2017. doi:10.1111/jgs.14969. Crossref | PubMed | ISI | Google Scholar33. Klimova TA, Bell EL, Shroff EH, Weinberg FD, Snyder CM, Dimri GP, Schumacker PT, Budinger GR, Chandel NS. Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. FASEB J 23: 783–794, 2009. doi:10.1096/fj.08-114256. Crossref | PubMed | ISI | Google Scholar34. Kuźnar-Kamińska B, Mikuła-Pietrasik J, Książek K, Tykarski A, Batura-Gabryel H. Lung cancer in chronic obstructive pulmonary disease patients: importance of cellular senescence. Pol Arch Intern Med 128: 462–468, 2018. doi:10.20452/pamw.4297. Crossref | PubMed | ISI | Google Scholar35. Leung J, Cho Y, Lockey RF, Kolliputi N. The role of aging in idiopathic pulmonary fibrosis. Lung 193: 605–610, 2015. doi:10.1007/s00408-015-9729-3. Crossref | PubMed | ISI | Google Scholar36. Meiners S, Eickelberg O, Königshoff M. Hallmarks of the ageing lung. Eur Respir J 45: 807–827, 2015. doi:10.1183/09031936.00186914. Crossref | PubMed | ISI | Google Scholar37. Niedernhofer LJ, Kirkland JL, Ladiges W. Molecular pathology endpoints useful for aging studies. Ageing Res Rev 35: 241–249, 2017. doi:10.1016/j.arr.2016.09.012. Crossref | PubMed | ISI | Google Scholar38. Palumbo S, Shin YJ, Ahmad K, Desai AA, Quijada H, Mohamed M, Knox A, Sammani S, Colson BA, Wang T, Garcia JG, Hecker L. Dysregulated Nox4 ubiquitination contributes to redox imbalance and age-related severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 312: L297–L308, 2017. doi:10.1152/ajplung.00305.2016. Link | ISI | Google Scholar39. Panopoulos S, Tektonidou M, Drosos AA, Liossis SN, Dimitroulas T, Garyfallos A, Sakkas L, Boumpas D, Voulgari PV, Daoussis D, Thomas K, Georgiopoulos G, Vosvotekas G, Vassilopoulos D, Sfikakis PP. Prevalence of comorbidities in systemic sclerosis versus rheumatoid arthritis: a comparative, multicenter, matched-cohort study. Arthritis Res Ther 20: 267, 2018. doi:10.1186/s13075-018-1771-0. Crossref | PubMed | ISI | Google Scholar40. Pardo A, Selman M. lung fibroblasts, aging, and idiopathic pulmonary fibrosis. Ann Am Thorac Soc 13, Suppl 5: S417–S421, 2016. doi:10.1513/AnnalsATS.201605-341AW. Crossref | PubMed | ISI | Google Scholar41. Parikh P, Britt RD Jr, Manlove LJ, Wicher SA, Roesler A, Ravix J, Teske J, Thompson MA, Sieck GC, Kirkland JL, LeBrasseur N, Tschumperlin DJ, Pabelick CM, Prakash YS. Hyperoxia-induced cellular senescence in fetal airway smooth muscle cells. Am J Respir Cell Mol Biol. In press. doi:10.1165/rcmb.2018-0176OC. Crossref | PubMed | ISI | Google Scholar42. Parikh P, Wicher S, Khandalavala K, Pabelick CM, Britt RD Jr, Prakash YS. Cellular Senescence in the lung across the age spectrum. Am J Physiol Lung Cell Mol Physiol. In press. doi:10.1152/ajplung.00424.2018. Link | ISI | Google Scholar43. Patterson KC, Shah RJ, Porteous MK, Christie JD, D’Errico CA, Chadwick M, Triano MJ, Deshpande C, Rossman MD, Litzky LA, Kreider M, Miller WT Jr. Interstitial lung disease in the elderly. Chest 151: 838–844, 2017. doi:10.1016/j.chest.2016.11.003. Crossref | PubMed | ISI | Google Scholar44. Pelkonen MK, Notkola IK, Laatikainen TK, Jousilahti P. 30-year trends in asthma and the trends in relation to hospitalization and mortality. Respir Med 142: 29–35, 2018. doi:10.1016/j.rmed.2018.07.012. Crossref | PubMed | ISI | Google Scholar45. Poor H. Pulmonary vascular diseases in the elderly. Clin Geriatr Med 33: 553–562, 2017. doi:10.1016/j.cger.2017.06.007. Crossref | PubMed | ISI | Google Scholar46. Sabin RJ, Anderson RM. Cellular senescence – its role in cancer and the response to ionizing radiation. Genome Integr 2: 7, 2011. doi:10.1186/2041-9414-2-7. Crossref | PubMed | Google Scholar47. Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, Oberg AL, Birch J, Salmonowicz H, Zhu Y, Mazula DL, Brooks RW, Fuhrmann-Stroissnigg H, Pirtskhalava T, Prakash YS, Tchkonia T, Robbins PD, Aubry MC, Passos JF, Kirkland JL, Tschumperlin DJ, Kita H, LeBrasseur NK. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8: 14532, 2017. doi:10.1038/ncomms14532. Crossref | PubMed | ISI | Google Scholar48. Scichilone N, Pedone C, Battaglia S, Sorino C, Bellia V. Diagnosis and management of asthma in the elderly. Eur J Intern Med 25: 336–342, 2014. doi:10.1016/j.ejim.2014.01.004. Crossref | PubMed | ISI | Google Scholar49. Selman M, Buendía-Roldán I, Pardo A. Aging and pulmonary fibrosis. Rev Invest Clin 68: 75–83, 2016. PubMed | Google Scholar50. Sicard D, Haak AJ, Choi KM, Craig AR, Fredenburgh LE, Tschumperlin DJ. Aging and anatomical variations in lung tissue stiffness. Am J Physiol Lung Cell Mol Physiol 314: L946–L955, 2018. doi:10.1152/ajplung.00415.2017. Link | ISI | Google Scholar51. Simmonds NJ. Ageing in cystic fibrosis and long-term survival. Paediatr Respir Rev 14, Suppl 1: 6–9, 2013. doi:10.1016/j.prrv.2013.01.007. Crossref | PubMed | ISI | Google Scholar52. Skloot GS. The effects of aging on lung structure and function. Clin Geriatr Med 33: 447–457, 2017. doi:10.1016/j.cger.2017.06.001. Crossref | PubMed | ISI | Google Scholar53. Stout MB, Justice JN, Nicklas BJ, Kirkland JL. Physiological aging: links among adipose tissue dysfunction, diabetes, and frailty. Physiology (Bethesda) 32: 9–19, 2017. doi:10.1152/physiol.00012.2016. Link | ISI | Google Scholar54. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123: 966–972, 2013. doi:10.1172/JCI64098. Crossref | PubMed | ISI | Google Scholar55. Thannickal VJ, Murthy M, Balch WE, Chandel NS, Meiners S, Eickelberg O, Selman M, Pardo A, White ES, Levy BD, Busse PJ, Tuder RM, Antony VB, Sznajder JI, Budinger GR. Blue journal conference. Aging and susceptibility to lung disease. Am J Respir Crit Care Med 191: 261–269, 2015. doi:10.1164/rccm.201410-1876PP. Crossref | PubMed | ISI | Google Scholar56. Tsai CL, Lee WY, Hanania NA, Camargo CA Jr. Age-related differences in clinical outcomes for acute asthma in the United States, 2006–2008. J Allergy Clin Immunol 129: 1252–1258.e1, 2012. doi:10.1016/j.jaci.2012.01.061. Crossref | PubMed | ISI | Google Scholar57. Ventura MT, Scichilone N, Paganelli R, Minciullo PL, Patella V, Bonini M, Passalacqua G, Lombardi C, Simioni L, Ridolo E, Del Giacco SR, Gangemi S, Canonica GW. Allergic diseases in the elderly: biological characteristics and main immunological and non-immunological mechanisms. Clin Mol Allergy 15: 2, 2017. doi:10.1186/s12948-017-0059-2. Crossref | PubMed | Google Scholar58. Vincent G, Velkoff V. The Next Four Decades: The Older Population in the United States: 2010 to 2050, edited by U.S. Dept. of Commerce Economics and Statistics Administration. Washington, DC: U.S. Census Bureau, 2010.Google Scholar59. Waters DW, Blokland KEC, Pathinayake PS, Burgess JK, Mutsaers SE, Prele CM, Schuliga M, Grainge CL, Knight DA. Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 315: L162–L172, 2018. doi:10.1152/ajplung.00037.2018. Link | ISI | Google Scholar60. Wiley CD, Campisi J. From ancient pathways to aging cells–connecting metabolism and cellular senescence. Cell Metab 23: 1013–1021, 2016. doi:10.1016/j.cmet.2016.05.010. Crossref | PubMed | ISI | Google Scholar61. Wu J, Dong F, Wang RA, Wang J, Zhao J, Yang M, Gong W, Cui R, Dong L. Central role of cellular senescence in TSLP-induced airway remodeling in asthma. PLoS One 8: e77795, 2013. doi:10.1371/journal.pone.0077795. Crossref | PubMed | ISI | Google Scholar62. Zeleznik J. Normative aging of the respiratory system. Clin Geriatr Med 19: 1–18, 2003. doi:10.1016/S0749-0690(02)00063-0. Crossref | PubMed | ISI | Google Scholar63. Zhao H, Dennery PA, Yao H. Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 314: L544–L554, 2018. doi:10.1152/ajplung.00521.2017. Link | ISI | Google ScholarAUTHOR NOTESAddress for reprint requests and other correspondence: R. E. Morty, Justus-Liebig-Universität Gießen, Giessen, 35392, Germany (e-mail: rory.[email protected]med.uni-giessen.de). Download PDF Back to Top Next FiguresReferencesRelatedInformation CollectionsAJP-Lung CollectionsSenescence in the Lung Cited ByPregnancy‐associated plasma protein‐A (PAPP‐A) is a key component of an interactive cellular mechanism promoting pulmonary fibrosis30 January 2022 | Journal of Cellular Physiology, Vol. 237, No. 4Aging increases senescence, calcium signaling, and extracellular matrix deposition in human airway smooth muscle29 July 2021 | PLOS ONE, Vol. 16, No. 7Announcing the Editorial Board Fellowship Program of the American Journal of Physiology-Lung Cellular and Molecular PhysiologyLarissa A. Shimoda, Chunxue Bai, Nathan W. Bartlett, Julie A. Bastarache, Carol Feghali-Bostwick, Wolfgang M. Kuebler, Y. S. Prakash, Eric P. Schmidt, and Rory E. Morty7 July 2021 | American Journal of Physiology-Lung Cellular and Molecular Physiology, Vol. 321, No. 1Alterung von Lunge und Immunsystem als Meilensteine in der Pathogenese von idiopathischer Lungenfibrose und COVID-1924 January 2021 | Der Pneumologe, Vol. 18, No. 3SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress15 January 2021 | Frontiers in Physiology, Vol. 11Cellular senescence: friend or foe to respiratory viral infections?8 October 2020 | European Respiratory Journal, Vol. 56, No. 6World health observances in November 2020: adult and pediatric pneumonia, preterm birth, and chronic obstructive pulmonary disease in focusFrancisco Casado and Rory E. Morty4 November 2020 | American Journal of Physiology-Lung Cellular and Molecular Physiology, Vol. 319, No. 5Reducing Senescent Cell Burden in Aging and DiseaseTrends in Molecular Medicine, Vol. 26, No. 7Metformin and SARS-CoV-2: mechanistic lessons on air pollution to weather the cytokine/thrombotic storm in COVID-1927 May 2020 | Aging, Vol. 12, No. 10Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasiaEttore Lignelli, Francesco Palumbo, Despoina Myti, and Rory E. Morty6 December 2019 | American Journal of Physiology-Lung Cellular and Molecular Physiology, Vol. 317, No. 6Modeling the impact of low-dose particulate matter on lung healthMichael Schuliga and Nathan Bartlett28 October 2019 | American Journal of Physiology-Lung Cellular and Molecular Physiology, Vol. 317, No. 5 More from this issue > Volume 316Issue 5May 2019Pages L822-L825 Copyright & PermissionsCopyright © 2019 the American Physiological Societyhttps://doi.org/10.1152/ajplung.00081.2019PubMed30892079History Received 19 February 2019 Accepted 15 March 2019 Published online 1 May 2019 Published in print 1 May 2019 Metrics" @default.
- W2923604003 created "2019-04-01" @default.
- W2923604003 creator A5019184753 @default.
- W2923604003 creator A5079580565 @default.
- W2923604003 date "2019-05-01" @default.
- W2923604003 modified "2023-10-02" @default.
- W2923604003 title "Senescence in the lung: is this getting old?" @default.
- W2923604003 cites W1967818318 @default.
- W2923604003 cites W2005960756 @default.
- W2923604003 cites W2008918292 @default.
- W2923604003 cites W2010790248 @default.
- W2923604003 cites W2038261102 @default.
- W2923604003 cites W2047124316 @default.
- W2923604003 cites W2071806134 @default.
- W2923604003 cites W2073545745 @default.
- W2923604003 cites W2086877549 @default.
- W2923604003 cites W2089181225 @default.
- W2923604003 cites W2096707644 @default.
- W2923604003 cites W2102657134 @default.
- W2923604003 cites W2104908670 @default.
- W2923604003 cites W2105295815 @default.
- W2923604003 cites W2105458725 @default.
- W2923604003 cites W2108887402 @default.
- W2923604003 cites W2122797682 @default.
- W2923604003 cites W2131377233 @default.
- W2923604003 cites W2135622170 @default.
- W2923604003 cites W2140930678 @default.
- W2923604003 cites W2150748567 @default.
- W2923604003 cites W2152174546 @default.
- W2923604003 cites W2162568242 @default.
- W2923604003 cites W2169986172 @default.
- W2923604003 cites W2292703944 @default.
- W2923604003 cites W2339116023 @default.
- W2923604003 cites W2426149297 @default.
- W2923604003 cites W2530258438 @default.
- W2923604003 cites W2551443275 @default.
- W2923604003 cites W2560805164 @default.
- W2923604003 cites W2564229868 @default.
- W2923604003 cites W2565550227 @default.
- W2923604003 cites W2566497735 @default.
- W2923604003 cites W2570412191 @default.
- W2923604003 cites W2575865790 @default.
- W2923604003 cites W2588427439 @default.
- W2923604003 cites W2591114726 @default.
- W2923604003 cites W2605674430 @default.
- W2923604003 cites W2611341457 @default.
- W2923604003 cites W2612986562 @default.
- W2923604003 cites W2739438570 @default.
- W2923604003 cites W2745312930 @default.
- W2923604003 cites W2748645463 @default.
- W2923604003 cites W2752455162 @default.
- W2923604003 cites W2752668646 @default.
- W2923604003 cites W2763650258 @default.
- W2923604003 cites W2772915294 @default.
- W2923604003 cites W2780590908 @default.
- W2923604003 cites W2781751290 @default.
- W2923604003 cites W2788966615 @default.
- W2923604003 cites W2795134170 @default.
- W2923604003 cites W2799329257 @default.
- W2923604003 cites W2811237680 @default.
- W2923604003 cites W2839188127 @default.
- W2923604003 cites W2883652366 @default.
- W2923604003 cites W2887488030 @default.
- W2923604003 cites W2902997102 @default.
- W2923604003 cites W2903053267 @default.
- W2923604003 cites W2908922892 @default.
- W2923604003 cites W2911465360 @default.
- W2923604003 cites W2917912893 @default.
- W2923604003 doi "https://doi.org/10.1152/ajplung.00081.2019" @default.
- W2923604003 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30892079" @default.
- W2923604003 hasPublicationYear "2019" @default.
- W2923604003 type Work @default.
- W2923604003 sameAs 2923604003 @default.
- W2923604003 citedByCount "12" @default.
- W2923604003 countsByYear W29236040032019 @default.
- W2923604003 countsByYear W29236040032020 @default.
- W2923604003 countsByYear W29236040032021 @default.
- W2923604003 countsByYear W29236040032022 @default.
- W2923604003 countsByYear W29236040032023 @default.
- W2923604003 crossrefType "journal-article" @default.
- W2923604003 hasAuthorship W2923604003A5019184753 @default.
- W2923604003 hasAuthorship W2923604003A5079580565 @default.
- W2923604003 hasBestOaLocation W29236040031 @default.
- W2923604003 hasConcept C126322002 @default.
- W2923604003 hasConcept C177713679 @default.
- W2923604003 hasConcept C2777714996 @default.
- W2923604003 hasConcept C522857546 @default.
- W2923604003 hasConcept C71924100 @default.
- W2923604003 hasConceptScore W2923604003C126322002 @default.
- W2923604003 hasConceptScore W2923604003C177713679 @default.
- W2923604003 hasConceptScore W2923604003C2777714996 @default.
- W2923604003 hasConceptScore W2923604003C522857546 @default.
- W2923604003 hasConceptScore W2923604003C71924100 @default.
- W2923604003 hasFunder F4320337338 @default.
- W2923604003 hasIssue "5" @default.
- W2923604003 hasLocation W29236040031 @default.
- W2923604003 hasLocation W29236040032 @default.
- W2923604003 hasOpenAccess W2923604003 @default.