Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923643591> ?p ?o ?g. }
- W2923643591 abstract "The real Jacobi group $G^J_1(mathbb{R})$, defined as the semi-direct product of the group ${rm SL}(2,mathbb{R})$ with the Heisenberg group $H_1$, is embedded in a $4times 4$ matrix realisation of the group ${rm Sp}(2,mathbb{R})$. The left-invariant one-forms on $G^J_1(mathbb{R})$ and their dual orthogonal left-invariant vector fields are calculated in the S-coordinates $(x,y,theta,p,q,kappa)$, and a left-invariant metric depending of 4 parameters $(alpha,beta,gamma,delta)$ is obtained. An invariant metric depending of $(alpha,beta)$ in the variables $(x,y,theta)$ on the Sasaki manifold ${rm SL}(2,mathbb{R})$ is presented. The well known Kähler balanced metric in the variables $(x,y,p,q)$ of the four-dimensional Siegel-Jacobi upper half-plane $mathcal{X}^J_1=frac{G^J_1(mathbb{R})}{{rm SO}(2) timesmathbb{R}} approxmathcal{X}_1 timesmathbb{R}^2$ depending of $(alpha,gamma)$ is written down as sum of the squares of four invariant one-forms, where $mathcal{X}_1$ denotes the Siegel upper half-plane. The left-invariant metric in the variables $(x,y,p,q,kappa)$ depending on $(alpha,gamma,delta)$ of a five-dimensional manifold $tilde{mathcal{X}}^J_1= frac{G^J_1(mathbb{R})}{{rm SO}(2)}approxmathcal{X}_1timesmathbb{R}^3$ is determined." @default.
- W2923643591 created "2019-04-01" @default.
- W2923643591 creator A5006558905 @default.
- W2923643591 date "2019-12-07" @default.
- W2923643591 modified "2023-09-27" @default.
- W2923643591 title "The Real Jacobi Group Revisited" @default.
- W2923643591 cites W1482466856 @default.
- W2923643591 cites W1483832569 @default.
- W2923643591 cites W1494599013 @default.
- W2923643591 cites W1504272734 @default.
- W2923643591 cites W1511145737 @default.
- W2923643591 cites W1523873229 @default.
- W2923643591 cites W1525341226 @default.
- W2923643591 cites W1529664207 @default.
- W2923643591 cites W1560145191 @default.
- W2923643591 cites W1574180159 @default.
- W2923643591 cites W1586229103 @default.
- W2923643591 cites W1587820746 @default.
- W2923643591 cites W1591380302 @default.
- W2923643591 cites W1595246290 @default.
- W2923643591 cites W1596766872 @default.
- W2923643591 cites W1607264298 @default.
- W2923643591 cites W1610274090 @default.
- W2923643591 cites W1612378352 @default.
- W2923643591 cites W1865757066 @default.
- W2923643591 cites W1960556876 @default.
- W2923643591 cites W1966003629 @default.
- W2923643591 cites W1969138632 @default.
- W2923643591 cites W1969771788 @default.
- W2923643591 cites W1978590090 @default.
- W2923643591 cites W1981907501 @default.
- W2923643591 cites W1983894121 @default.
- W2923643591 cites W1990970232 @default.
- W2923643591 cites W1996885946 @default.
- W2923643591 cites W1999625583 @default.
- W2923643591 cites W2001710996 @default.
- W2923643591 cites W2005847895 @default.
- W2923643591 cites W2011812071 @default.
- W2923643591 cites W202329394 @default.
- W2923643591 cites W2024513833 @default.
- W2923643591 cites W2028040194 @default.
- W2923643591 cites W2030017768 @default.
- W2923643591 cites W2032895776 @default.
- W2923643591 cites W2038317066 @default.
- W2923643591 cites W2040307194 @default.
- W2923643591 cites W2044399288 @default.
- W2923643591 cites W2046259863 @default.
- W2923643591 cites W2046543389 @default.
- W2923643591 cites W2048023534 @default.
- W2923643591 cites W2055751889 @default.
- W2923643591 cites W205718839 @default.
- W2923643591 cites W2066599906 @default.
- W2923643591 cites W2069857145 @default.
- W2923643591 cites W2075473938 @default.
- W2923643591 cites W2086121979 @default.
- W2923643591 cites W2089268773 @default.
- W2923643591 cites W2089465567 @default.
- W2923643591 cites W2089790936 @default.
- W2923643591 cites W2105192668 @default.
- W2923643591 cites W2114872530 @default.
- W2923643591 cites W2128633210 @default.
- W2923643591 cites W2142348589 @default.
- W2923643591 cites W2167505533 @default.
- W2923643591 cites W2172286895 @default.
- W2923643591 cites W2182148895 @default.
- W2923643591 cites W2183270384 @default.
- W2923643591 cites W2185064747 @default.
- W2923643591 cites W2243770518 @default.
- W2923643591 cites W2316351046 @default.
- W2923643591 cites W2317626881 @default.
- W2923643591 cites W2320438804 @default.
- W2923643591 cites W2347574144 @default.
- W2923643591 cites W2498157766 @default.
- W2923643591 cites W2578929986 @default.
- W2923643591 cites W2785853232 @default.
- W2923643591 cites W2962727150 @default.
- W2923643591 cites W2962921367 @default.
- W2923643591 cites W2963696708 @default.
- W2923643591 cites W2963698549 @default.
- W2923643591 cites W3036448339 @default.
- W2923643591 cites W3100420683 @default.
- W2923643591 cites W3102543620 @default.
- W2923643591 cites W3103921278 @default.
- W2923643591 cites W3104202268 @default.
- W2923643591 cites W595611458 @default.
- W2923643591 cites W613286344 @default.
- W2923643591 cites W624638370 @default.
- W2923643591 cites W7967069 @default.
- W2923643591 cites W1623429972 @default.
- W2923643591 doi "https://doi.org/10.3842/sigma.2019.096" @default.
- W2923643591 hasPublicationYear "2019" @default.
- W2923643591 type Work @default.
- W2923643591 sameAs 2923643591 @default.
- W2923643591 citedByCount "2" @default.
- W2923643591 countsByYear W29236435912020 @default.
- W2923643591 countsByYear W29236435912021 @default.
- W2923643591 crossrefType "journal-article" @default.
- W2923643591 hasAuthorship W2923643591A5006558905 @default.
- W2923643591 hasBestOaLocation W29236435911 @default.
- W2923643591 hasConcept C114614502 @default.