Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923688117> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2923688117 abstract "Anomalies in local weather cause inaccuracies in daily predictions using meso-scale numerical models. Statistical methods using historical data can adapt the forecasts to specific local conditions. Differential polynomial network is a recent machine learning technique used to develop post-processing models. It decomposes and substitutes for the general linear Partial Differential Equation being able to describe the local atmospheric dynamics which is too complex to be modelled by standard soft-computing. The complete derivative formula is decomposed, using a multi-layer polynomial network structure, into specific sub-PDE solutions of the unknown node sum functions. The sum PDE models, using a polynomial PDE substitution based on Operational Calculus, represent spatial data relations between the relevant meteorological inputs->output quantities. The proposed forecasts post-processing is based on the 2-stage approach of the Perfect Prog method used routinely in meteorology. The original procedure is extended with initial estimations of the optimal numbers of training days whose latest data observations are used to elicit daily prediction models in the 1st stage. Determination of the optimal models initialization time allows for improvements in the middle-term numerical forecasts of wind speed in prevailing more or less settled weather. In the 2nd stage the correction model is applied to forecasts of the training input variables to calculate 24-h prediction series of the target wind speed at the corresponding time." @default.
- W2923688117 created "2019-04-01" @default.
- W2923688117 creator A5022710304 @default.
- W2923688117 creator A5048431138 @default.
- W2923688117 creator A5084854588 @default.
- W2923688117 date "2019-03-21" @default.
- W2923688117 modified "2023-09-27" @default.
- W2923688117 title "Post-processing of Wind-Speed Forecasts Using the Extended Perfect Prog Method with Polynomial Neural Networks to Elicit PDE Models" @default.
- W2923688117 cites W1696703109 @default.
- W2923688117 cites W1901537671 @default.
- W2923688117 cites W2024692966 @default.
- W2923688117 cites W2030423565 @default.
- W2923688117 cites W2032204830 @default.
- W2923688117 cites W2065949693 @default.
- W2923688117 cites W2072382106 @default.
- W2923688117 doi "https://doi.org/10.1007/978-3-030-14347-3_2" @default.
- W2923688117 hasPublicationYear "2019" @default.
- W2923688117 type Work @default.
- W2923688117 sameAs 2923688117 @default.
- W2923688117 citedByCount "0" @default.
- W2923688117 crossrefType "book-chapter" @default.
- W2923688117 hasAuthorship W2923688117A5022710304 @default.
- W2923688117 hasAuthorship W2923688117A5048431138 @default.
- W2923688117 hasAuthorship W2923688117A5084854588 @default.
- W2923688117 hasConcept C11413529 @default.
- W2923688117 hasConcept C114466953 @default.
- W2923688117 hasConcept C126255220 @default.
- W2923688117 hasConcept C127413603 @default.
- W2923688117 hasConcept C134306372 @default.
- W2923688117 hasConcept C154945302 @default.
- W2923688117 hasConcept C199360897 @default.
- W2923688117 hasConcept C28826006 @default.
- W2923688117 hasConcept C33923547 @default.
- W2923688117 hasConcept C41008148 @default.
- W2923688117 hasConcept C50644808 @default.
- W2923688117 hasConcept C53846429 @default.
- W2923688117 hasConcept C62611344 @default.
- W2923688117 hasConcept C66938386 @default.
- W2923688117 hasConcept C90119067 @default.
- W2923688117 hasConcept C93779851 @default.
- W2923688117 hasConceptScore W2923688117C11413529 @default.
- W2923688117 hasConceptScore W2923688117C114466953 @default.
- W2923688117 hasConceptScore W2923688117C126255220 @default.
- W2923688117 hasConceptScore W2923688117C127413603 @default.
- W2923688117 hasConceptScore W2923688117C134306372 @default.
- W2923688117 hasConceptScore W2923688117C154945302 @default.
- W2923688117 hasConceptScore W2923688117C199360897 @default.
- W2923688117 hasConceptScore W2923688117C28826006 @default.
- W2923688117 hasConceptScore W2923688117C33923547 @default.
- W2923688117 hasConceptScore W2923688117C41008148 @default.
- W2923688117 hasConceptScore W2923688117C50644808 @default.
- W2923688117 hasConceptScore W2923688117C53846429 @default.
- W2923688117 hasConceptScore W2923688117C62611344 @default.
- W2923688117 hasConceptScore W2923688117C66938386 @default.
- W2923688117 hasConceptScore W2923688117C90119067 @default.
- W2923688117 hasConceptScore W2923688117C93779851 @default.
- W2923688117 hasLocation W29236881171 @default.
- W2923688117 hasOpenAccess W2923688117 @default.
- W2923688117 hasPrimaryLocation W29236881171 @default.
- W2923688117 hasRelatedWork W100894980 @default.
- W2923688117 hasRelatedWork W1562041101 @default.
- W2923688117 hasRelatedWork W1606601554 @default.
- W2923688117 hasRelatedWork W1968160841 @default.
- W2923688117 hasRelatedWork W1991563584 @default.
- W2923688117 hasRelatedWork W2012992565 @default.
- W2923688117 hasRelatedWork W206045328 @default.
- W2923688117 hasRelatedWork W2139675804 @default.
- W2923688117 hasRelatedWork W2199838587 @default.
- W2923688117 hasRelatedWork W2269435446 @default.
- W2923688117 hasRelatedWork W2305920443 @default.
- W2923688117 hasRelatedWork W2322963954 @default.
- W2923688117 hasRelatedWork W2342960111 @default.
- W2923688117 hasRelatedWork W2610338436 @default.
- W2923688117 hasRelatedWork W2908830118 @default.
- W2923688117 hasRelatedWork W2950791141 @default.
- W2923688117 hasRelatedWork W3023523740 @default.
- W2923688117 hasRelatedWork W3024691848 @default.
- W2923688117 hasRelatedWork W3186260825 @default.
- W2923688117 hasRelatedWork W2187878663 @default.
- W2923688117 isParatext "false" @default.
- W2923688117 isRetracted "false" @default.
- W2923688117 magId "2923688117" @default.
- W2923688117 workType "book-chapter" @default.