Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923704032> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2923704032 endingPage "11" @default.
- W2923704032 startingPage "1" @default.
- W2923704032 abstract "Abstract We deal with multi-objective optimization problems in various fields and in some of them, the objectives are found to be conflicting in nature. We obtain multiple optimal or near-optimal solutions of the problem using a multi-objective evolutionary algorithm (MOEA). In this study, an approach is proposed for enhancing the use of MOEA to establish important input–output relationships of some manufacturing processes. In the proposed approach, after getting an initial set of Pareto-front data points through MOEA, the trade-off solutions are used to train a neuro-fuzzy system (NFS) utilizing an EOA. This trained NFS is then used to get a modified Pareto-front and the modified trade-off solutions are clustered using different clustering algorithms. These clustered solutions are then analyzed to establish the relationships among decision variables and objectives. These principles will surely enrich the knowledge of designers and inspire them to apply this approach for a broad range of practical problems. The data related to two different engineering problems are used to show the applicability of the proposed approach." @default.
- W2923704032 created "2019-04-01" @default.
- W2923704032 creator A5019481683 @default.
- W2923704032 creator A5019487756 @default.
- W2923704032 date "2019-07-01" @default.
- W2923704032 modified "2023-09-24" @default.
- W2923704032 title "A novel approach for neuro-fuzzy system-based multi-objective optimization to capture inherent fuzziness in engineering processes" @default.
- W2923704032 cites W1487117496 @default.
- W2923704032 cites W1961948334 @default.
- W2923704032 cites W1968075052 @default.
- W2923704032 cites W1971348887 @default.
- W2923704032 cites W1981378365 @default.
- W2923704032 cites W1983436126 @default.
- W2923704032 cites W1992967027 @default.
- W2923704032 cites W1997705876 @default.
- W2923704032 cites W2017051131 @default.
- W2923704032 cites W2019207321 @default.
- W2923704032 cites W2021851464 @default.
- W2923704032 cites W2036282971 @default.
- W2923704032 cites W2036661955 @default.
- W2923704032 cites W2040865613 @default.
- W2923704032 cites W2049012913 @default.
- W2923704032 cites W2067756554 @default.
- W2923704032 cites W2074634323 @default.
- W2923704032 cites W2081873429 @default.
- W2923704032 cites W2083023271 @default.
- W2923704032 cites W2083942758 @default.
- W2923704032 cites W2103973496 @default.
- W2923704032 cites W2106592763 @default.
- W2923704032 cites W2126105956 @default.
- W2923704032 cites W2133508555 @default.
- W2923704032 cites W2145485591 @default.
- W2923704032 cites W2145839659 @default.
- W2923704032 cites W2154610539 @default.
- W2923704032 cites W2167322292 @default.
- W2923704032 cites W2562569288 @default.
- W2923704032 cites W2788669370 @default.
- W2923704032 cites W2802292836 @default.
- W2923704032 cites W2880828199 @default.
- W2923704032 cites W2889538283 @default.
- W2923704032 cites W4249749961 @default.
- W2923704032 doi "https://doi.org/10.1016/j.knosys.2019.03.017" @default.
- W2923704032 hasPublicationYear "2019" @default.
- W2923704032 type Work @default.
- W2923704032 sameAs 2923704032 @default.
- W2923704032 citedByCount "13" @default.
- W2923704032 countsByYear W29237040322019 @default.
- W2923704032 countsByYear W29237040322020 @default.
- W2923704032 countsByYear W29237040322021 @default.
- W2923704032 countsByYear W29237040322022 @default.
- W2923704032 crossrefType "journal-article" @default.
- W2923704032 hasAuthorship W2923704032A5019481683 @default.
- W2923704032 hasAuthorship W2923704032A5019487756 @default.
- W2923704032 hasConcept C119857082 @default.
- W2923704032 hasConcept C154945302 @default.
- W2923704032 hasConcept C195975749 @default.
- W2923704032 hasConcept C29470771 @default.
- W2923704032 hasConcept C41008148 @default.
- W2923704032 hasConcept C58166 @default.
- W2923704032 hasConceptScore W2923704032C119857082 @default.
- W2923704032 hasConceptScore W2923704032C154945302 @default.
- W2923704032 hasConceptScore W2923704032C195975749 @default.
- W2923704032 hasConceptScore W2923704032C29470771 @default.
- W2923704032 hasConceptScore W2923704032C41008148 @default.
- W2923704032 hasConceptScore W2923704032C58166 @default.
- W2923704032 hasLocation W29237040321 @default.
- W2923704032 hasOpenAccess W2923704032 @default.
- W2923704032 hasPrimaryLocation W29237040321 @default.
- W2923704032 hasRelatedWork W2961085424 @default.
- W2923704032 hasRelatedWork W3046775127 @default.
- W2923704032 hasRelatedWork W3107474891 @default.
- W2923704032 hasRelatedWork W3209574120 @default.
- W2923704032 hasRelatedWork W4205958290 @default.
- W2923704032 hasRelatedWork W4282937393 @default.
- W2923704032 hasRelatedWork W4286629047 @default.
- W2923704032 hasRelatedWork W4306321456 @default.
- W2923704032 hasRelatedWork W4306674287 @default.
- W2923704032 hasRelatedWork W4224009465 @default.
- W2923704032 hasVolume "175" @default.
- W2923704032 isParatext "false" @default.
- W2923704032 isRetracted "false" @default.
- W2923704032 magId "2923704032" @default.
- W2923704032 workType "article" @default.