Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923964617> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2923964617 endingPage "392" @default.
- W2923964617 startingPage "380" @default.
- W2923964617 abstract "With the rapid development of social network and E-commence, collaborative filtering (CF) has been widely applied and studied as an effective way to alleviate the pressure of information overloading. However, the CF-based algorithms often degrade significantly in their recommendation performance due to the sparse history rating data. In view of this sparse problem, this paper presented a collaborative filtering recommendation algorithm based on AdaBoost-Naive Bayesian algorithm. In this model, we transform the traditional algorithms of predicting ratings directly to classify unrated data. Considering that Bayesian theory is a good machine learning method that is often used for text class. Considering that machine learning method can be used for text classification, we utilize it to learn user’s preferences for a certain item characteristic as a based classify. Ensemble learning, Adaboost, is also adopted to optimize and adjust adaptively the weights of the results of Bayesian classify. Finally, all of the predicted results of unrated data would be filled into the user-item matrix. The experimental results show that the sparseness of rating data has been alleviated and our proposed algorithm can improve the quality of recommender system." @default.
- W2923964617 created "2019-04-01" @default.
- W2923964617 creator A5001989082 @default.
- W2923964617 creator A5012769879 @default.
- W2923964617 creator A5025304224 @default.
- W2923964617 creator A5036454436 @default.
- W2923964617 creator A5040226276 @default.
- W2923964617 date "2019-01-01" @default.
- W2923964617 modified "2023-10-16" @default.
- W2923964617 title "Collaborative Filtering Recommendation Algorithm Based on AdaBoost-Naïve Bayesian Algorithm" @default.
- W2923964617 cites W1139185857 @default.
- W2923964617 cites W1498013186 @default.
- W2923964617 cites W1971487630 @default.
- W2923964617 cites W1997731668 @default.
- W2923964617 cites W2013418341 @default.
- W2923964617 cites W2025605741 @default.
- W2923964617 cites W2030144199 @default.
- W2923964617 cites W2042281163 @default.
- W2923964617 cites W2070481445 @default.
- W2923964617 cites W2096250234 @default.
- W2923964617 cites W2140942692 @default.
- W2923964617 cites W2142144955 @default.
- W2923964617 cites W2155106456 @default.
- W2923964617 cites W2278353820 @default.
- W2923964617 cites W2294045431 @default.
- W2923964617 cites W2398161755 @default.
- W2923964617 cites W4232478844 @default.
- W2923964617 doi "https://doi.org/10.1007/978-3-030-15127-0_39" @default.
- W2923964617 hasPublicationYear "2019" @default.
- W2923964617 type Work @default.
- W2923964617 sameAs 2923964617 @default.
- W2923964617 citedByCount "1" @default.
- W2923964617 countsByYear W29239646172022 @default.
- W2923964617 crossrefType "book-chapter" @default.
- W2923964617 hasAuthorship W2923964617A5001989082 @default.
- W2923964617 hasAuthorship W2923964617A5012769879 @default.
- W2923964617 hasAuthorship W2923964617A5025304224 @default.
- W2923964617 hasAuthorship W2923964617A5036454436 @default.
- W2923964617 hasAuthorship W2923964617A5040226276 @default.
- W2923964617 hasConcept C107673813 @default.
- W2923964617 hasConcept C11413529 @default.
- W2923964617 hasConcept C119857082 @default.
- W2923964617 hasConcept C12267149 @default.
- W2923964617 hasConcept C141404830 @default.
- W2923964617 hasConcept C153180895 @default.
- W2923964617 hasConcept C154945302 @default.
- W2923964617 hasConcept C21569690 @default.
- W2923964617 hasConcept C41008148 @default.
- W2923964617 hasConcept C557471498 @default.
- W2923964617 hasConceptScore W2923964617C107673813 @default.
- W2923964617 hasConceptScore W2923964617C11413529 @default.
- W2923964617 hasConceptScore W2923964617C119857082 @default.
- W2923964617 hasConceptScore W2923964617C12267149 @default.
- W2923964617 hasConceptScore W2923964617C141404830 @default.
- W2923964617 hasConceptScore W2923964617C153180895 @default.
- W2923964617 hasConceptScore W2923964617C154945302 @default.
- W2923964617 hasConceptScore W2923964617C21569690 @default.
- W2923964617 hasConceptScore W2923964617C41008148 @default.
- W2923964617 hasConceptScore W2923964617C557471498 @default.
- W2923964617 hasLocation W29239646171 @default.
- W2923964617 hasOpenAccess W2923964617 @default.
- W2923964617 hasPrimaryLocation W29239646171 @default.
- W2923964617 hasRelatedWork W1479993970 @default.
- W2923964617 hasRelatedWork W1497071005 @default.
- W2923964617 hasRelatedWork W1773619406 @default.
- W2923964617 hasRelatedWork W2075040002 @default.
- W2923964617 hasRelatedWork W2348159088 @default.
- W2923964617 hasRelatedWork W2356507104 @default.
- W2923964617 hasRelatedWork W2377968345 @default.
- W2923964617 hasRelatedWork W2402445420 @default.
- W2923964617 hasRelatedWork W2573253449 @default.
- W2923964617 hasRelatedWork W2964263397 @default.
- W2923964617 isParatext "false" @default.
- W2923964617 isRetracted "false" @default.
- W2923964617 magId "2923964617" @default.
- W2923964617 workType "book-chapter" @default.