Matches in SemOpenAlex for { <https://semopenalex.org/work/W2924119980> ?p ?o ?g. }
- W2924119980 endingPage "1088" @default.
- W2924119980 startingPage "1079" @default.
- W2924119980 abstract "ConspectusThe design of solid-state materials whose properties and functions can be manipulated in a controlled manner by the application of light is an important objective in modern materials chemistry. When the material changes property or function, it is helpful if a simple measurable response, such as a change in color, can be detected. Potential applications for such materials are wide ranging, from data storage to smart windows. With the growing emphasis on solid-state materials that have two or more accessible energy states and which exhibit bistability, attention has turned to transition metal complexes that contain ambidentate ligands that can switch between linkage isomeric forms when activated by light. Suitable ligands that show promise in this area include nitrosyls, nitro groups, and coordinated sulfur dioxide molecules, each of which can coordinate to a metal center in more than one bonding mode. A nitrosyl normally coordinates through its N atom (η1-NO) but when photoactivated can undergo isomerism and coordinate through its O atom (η1-ON). At a molecular level, converting between these two configurations can act as an “on/off” switch. The analysis of such materials has been aided by the development of photocrystallographic techniques, which allow the full three-dimensional structure of a single crystal of a complex, under photoactivation, to be determined, when it is in either a metastable or short-lived excited state. The technique effectively brings the dimension of “time” to the crystallographic experiment and brings us closer to being able to watch solid-state processes occur in real time.In this Account, we highlight the advances made in photocrystallography for studying solid-state, photoactivated linkage isomerism and describe the factors that favor the switching process and which allow complete switching between isomers. We demonstrate that control of temperature is key to achieving either a metastable state or an excited state with a specific lifetime. We draw our conclusions from published work on the formation of photoactivated metastable states for nitrosyl and sulfur dioxide complexes and from our own work on photoactivated switching between nitro and nitrito groups. We show that efficient switching between isomers is dependent on the wavelength of light used, on the temperature at which the experiment is carried out, on the flexibility of the crystal lattice, and on both the electronic and steric environment of the ambidentate ligand undergoing isomerism. We have designed and prepared a number of nitro/nitrito isomeric metal complexes that undergo reversible 100% conversion between the two forms at temperatures close to room temperature. Through our fine control over the generation of the metastable states, it should be possible to effectively “dial up” a suitable temperature to give a metastable or an excited state with a desired lifetime." @default.
- W2924119980 created "2019-04-01" @default.
- W2924119980 creator A5025595556 @default.
- W2924119980 creator A5025784191 @default.
- W2924119980 creator A5047965868 @default.
- W2924119980 creator A5061013304 @default.
- W2924119980 date "2019-03-27" @default.
- W2924119980 modified "2023-10-18" @default.
- W2924119980 title "Photocrystallographic Studies on Transition Metal Nitrito Metastable Linkage Isomers: Manipulating the Metastable State" @default.
- W2924119980 cites W1964025101 @default.
- W2924119980 cites W1968263108 @default.
- W2924119980 cites W1973041332 @default.
- W2924119980 cites W1981581051 @default.
- W2924119980 cites W1981836155 @default.
- W2924119980 cites W1983539437 @default.
- W2924119980 cites W1986955547 @default.
- W2924119980 cites W1988175527 @default.
- W2924119980 cites W1988458339 @default.
- W2924119980 cites W1990423050 @default.
- W2924119980 cites W1994391840 @default.
- W2924119980 cites W1997080522 @default.
- W2924119980 cites W2002548907 @default.
- W2924119980 cites W2020620422 @default.
- W2924119980 cites W2033369781 @default.
- W2924119980 cites W2036198143 @default.
- W2924119980 cites W2042953778 @default.
- W2924119980 cites W2050437945 @default.
- W2924119980 cites W2053927361 @default.
- W2924119980 cites W2054120306 @default.
- W2924119980 cites W2055464429 @default.
- W2924119980 cites W2055620942 @default.
- W2924119980 cites W2056440784 @default.
- W2924119980 cites W2057673966 @default.
- W2924119980 cites W2060050979 @default.
- W2924119980 cites W2065184787 @default.
- W2924119980 cites W2065382577 @default.
- W2924119980 cites W2066380360 @default.
- W2924119980 cites W2068110008 @default.
- W2924119980 cites W2083217269 @default.
- W2924119980 cites W2086500301 @default.
- W2924119980 cites W2089072541 @default.
- W2924119980 cites W2089373133 @default.
- W2924119980 cites W2090689576 @default.
- W2924119980 cites W2097976699 @default.
- W2924119980 cites W2104978178 @default.
- W2924119980 cites W2106634686 @default.
- W2924119980 cites W2111227046 @default.
- W2924119980 cites W2118522707 @default.
- W2924119980 cites W2122043490 @default.
- W2924119980 cites W2134490398 @default.
- W2924119980 cites W2146927859 @default.
- W2924119980 cites W2154311820 @default.
- W2924119980 cites W2154550340 @default.
- W2924119980 cites W2162248893 @default.
- W2924119980 cites W2169160408 @default.
- W2924119980 cites W2259650532 @default.
- W2924119980 cites W2318391751 @default.
- W2924119980 cites W2325478206 @default.
- W2924119980 cites W2330526818 @default.
- W2924119980 cites W2334679641 @default.
- W2924119980 cites W2756284717 @default.
- W2924119980 cites W2758354717 @default.
- W2924119980 cites W2787457303 @default.
- W2924119980 cites W2949484333 @default.
- W2924119980 cites W2953363483 @default.
- W2924119980 cites W4229619044 @default.
- W2924119980 cites W4235684535 @default.
- W2924119980 cites W4241784402 @default.
- W2924119980 cites W4376454005 @default.
- W2924119980 doi "https://doi.org/10.1021/acs.accounts.9b00018" @default.
- W2924119980 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7005940" @default.
- W2924119980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30916544" @default.
- W2924119980 hasPublicationYear "2019" @default.
- W2924119980 type Work @default.
- W2924119980 sameAs 2924119980 @default.
- W2924119980 citedByCount "35" @default.
- W2924119980 countsByYear W29241199802019 @default.
- W2924119980 countsByYear W29241199802020 @default.
- W2924119980 countsByYear W29241199802021 @default.
- W2924119980 countsByYear W29241199802022 @default.
- W2924119980 countsByYear W29241199802023 @default.
- W2924119980 crossrefType "journal-article" @default.
- W2924119980 hasAuthorship W2924119980A5025595556 @default.
- W2924119980 hasAuthorship W2924119980A5025784191 @default.
- W2924119980 hasAuthorship W2924119980A5047965868 @default.
- W2924119980 hasAuthorship W2924119980A5061013304 @default.
- W2924119980 hasBestOaLocation W29241199801 @default.
- W2924119980 hasConcept C106773901 @default.
- W2924119980 hasConcept C107814960 @default.
- W2924119980 hasConcept C121332964 @default.
- W2924119980 hasConcept C147789679 @default.
- W2924119980 hasConcept C149635348 @default.
- W2924119980 hasConcept C159467904 @default.
- W2924119980 hasConcept C161790260 @default.
- W2924119980 hasConcept C171250308 @default.
- W2924119980 hasConcept C178790620 @default.
- W2924119980 hasConcept C181500209 @default.
- W2924119980 hasConcept C184779094 @default.