Matches in SemOpenAlex for { <https://semopenalex.org/work/W2924185635> ?p ?o ?g. }
- W2924185635 endingPage "1288" @default.
- W2924185635 startingPage "1279" @default.
- W2924185635 abstract "Spectral unmixing (SU) is a technique to characterize mixed pixels in hyperspectral images measured by remote sensors. Most of the spectral unmixing algorithms are developed using the linear mixing models. To estimate endmembers and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are widely used in the SU problem. One of the constraints which was added to NMF is sparsity, that was regularized by L q norm. In this paper, a new algorithm based on distributed optimization is suggested for spectral unmixing. In the proposed algorithm, a network including single-node clusters is employed. Each pixel in the hyperspectral images is considered as a node in this network. The sparsity-constrained distributed unmixing is optimized with diffusion least mean p-power (LMP) strategy, and then the update equations for fractional abundance and signature matrices are obtained. Afterward, the proposed algorithm is analyzed for different values of LMP power and L q norms. Simulation results based on defined performance metrics illustrate the advantage of the proposed algorithm in spectral unmixing of hyperspectral data compared with other methods." @default.
- W2924185635 created "2019-04-01" @default.
- W2924185635 creator A5041280430 @default.
- W2924185635 creator A5046308590 @default.
- W2924185635 creator A5064031518 @default.
- W2924185635 date "2019-04-01" @default.
- W2924185635 modified "2023-09-25" @default.
- W2924185635 title "Sparsity-Constrained Distributed Unmixing of Hyperspectral Data" @default.
- W2924185635 cites W1513230388 @default.
- W2924185635 cites W1573448431 @default.
- W2924185635 cites W1608180792 @default.
- W2924185635 cites W1902027874 @default.
- W2924185635 cites W1963659868 @default.
- W2924185635 cites W1964570608 @default.
- W2924185635 cites W1970997001 @default.
- W2924185635 cites W1982755765 @default.
- W2924185635 cites W1993694937 @default.
- W2924185635 cites W2000071783 @default.
- W2924185635 cites W2007502829 @default.
- W2924185635 cites W2022470997 @default.
- W2924185635 cites W2029786966 @default.
- W2924185635 cites W2032944446 @default.
- W2924185635 cites W2048056733 @default.
- W2924185635 cites W2059745395 @default.
- W2924185635 cites W2063069198 @default.
- W2924185635 cites W2063790512 @default.
- W2924185635 cites W2070424424 @default.
- W2924185635 cites W2084252873 @default.
- W2924185635 cites W2101837437 @default.
- W2924185635 cites W2114486983 @default.
- W2924185635 cites W2117027921 @default.
- W2924185635 cites W2121820607 @default.
- W2924185635 cites W2122944810 @default.
- W2924185635 cites W2125298866 @default.
- W2924185635 cites W2134328014 @default.
- W2924185635 cites W2142786738 @default.
- W2924185635 cites W2157321686 @default.
- W2924185635 cites W2163886442 @default.
- W2924185635 cites W2167919134 @default.
- W2924185635 cites W2342750892 @default.
- W2924185635 cites W2344025572 @default.
- W2924185635 cites W2548019060 @default.
- W2924185635 cites W2566928557 @default.
- W2924185635 cites W2604977491 @default.
- W2924185635 cites W2605327034 @default.
- W2924185635 cites W2617737158 @default.
- W2924185635 cites W2743180144 @default.
- W2924185635 cites W2761336374 @default.
- W2924185635 cites W2792167075 @default.
- W2924185635 cites W2884781614 @default.
- W2924185635 cites W2893348249 @default.
- W2924185635 cites W2962907301 @default.
- W2924185635 cites W2963236034 @default.
- W2924185635 cites W2963634308 @default.
- W2924185635 cites W3101195009 @default.
- W2924185635 cites W3101444344 @default.
- W2924185635 cites W3104040694 @default.
- W2924185635 cites W4255163160 @default.
- W2924185635 doi "https://doi.org/10.1109/jstars.2019.2901122" @default.
- W2924185635 hasPublicationYear "2019" @default.
- W2924185635 type Work @default.
- W2924185635 sameAs 2924185635 @default.
- W2924185635 citedByCount "14" @default.
- W2924185635 countsByYear W29241856352019 @default.
- W2924185635 countsByYear W29241856352020 @default.
- W2924185635 countsByYear W29241856352021 @default.
- W2924185635 countsByYear W29241856352022 @default.
- W2924185635 crossrefType "journal-article" @default.
- W2924185635 hasAuthorship W2924185635A5041280430 @default.
- W2924185635 hasAuthorship W2924185635A5046308590 @default.
- W2924185635 hasAuthorship W2924185635A5064031518 @default.
- W2924185635 hasBestOaLocation W29241856352 @default.
- W2924185635 hasConcept C127313418 @default.
- W2924185635 hasConcept C153180895 @default.
- W2924185635 hasConcept C154945302 @default.
- W2924185635 hasConcept C159078339 @default.
- W2924185635 hasConcept C41008148 @default.
- W2924185635 hasConcept C62649853 @default.
- W2924185635 hasConceptScore W2924185635C127313418 @default.
- W2924185635 hasConceptScore W2924185635C153180895 @default.
- W2924185635 hasConceptScore W2924185635C154945302 @default.
- W2924185635 hasConceptScore W2924185635C159078339 @default.
- W2924185635 hasConceptScore W2924185635C41008148 @default.
- W2924185635 hasConceptScore W2924185635C62649853 @default.
- W2924185635 hasIssue "4" @default.
- W2924185635 hasLocation W29241856351 @default.
- W2924185635 hasLocation W29241856352 @default.
- W2924185635 hasOpenAccess W2924185635 @default.
- W2924185635 hasPrimaryLocation W29241856351 @default.
- W2924185635 hasRelatedWork W1869808405 @default.
- W2924185635 hasRelatedWork W2009382932 @default.
- W2924185635 hasRelatedWork W2028628118 @default.
- W2924185635 hasRelatedWork W2031007444 @default.
- W2924185635 hasRelatedWork W2775464024 @default.
- W2924185635 hasRelatedWork W2783789044 @default.
- W2924185635 hasRelatedWork W2972973180 @default.
- W2924185635 hasRelatedWork W3211035526 @default.
- W2924185635 hasRelatedWork W4291701050 @default.