Matches in SemOpenAlex for { <https://semopenalex.org/work/W2924254597> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2924254597 abstract "Nearest neighbor partitioning (NNP) method has been proved to be an effective method to enhance the quality of neural network classifiers. However, there are many cluster shapes in NNP, which results in a large number of local optimal solutions in the searching space by the traditional particle swarm optimization (PSO) algorithm. Therefore, the multi-layer particle swarm optimization (MLPSO) is introduced to increase the diversity of searching groups through increasing the number of layers, thereby improving the performance when facing with large scale problems. In this study, we adopt the combination of multi-layer particle swarm optimization and nearest neighbor partitioning to solve the local optimal problem caused by multi-cluster shapes in the optimization of NNP. Experimental results show that this method improves the performance of classifier." @default.
- W2924254597 created "2019-04-01" @default.
- W2924254597 creator A5004855404 @default.
- W2924254597 creator A5028843305 @default.
- W2924254597 creator A5044246017 @default.
- W2924254597 creator A5053275663 @default.
- W2924254597 creator A5064323494 @default.
- W2924254597 creator A5087542455 @default.
- W2924254597 creator A5089554235 @default.
- W2924254597 date "2019-03-21" @default.
- W2924254597 modified "2023-10-18" @default.
- W2924254597 title "Improving Nearest Neighbor Partitioning Neural Network Classifier Using Multi-layer Particle Swarm Optimization" @default.
- W2924254597 cites W1676820704 @default.
- W2924254597 cites W183625566 @default.
- W2924254597 cites W1973751060 @default.
- W2924254597 cites W1985614822 @default.
- W2924254597 cites W1987256379 @default.
- W2924254597 cites W1992794286 @default.
- W2924254597 cites W2007161888 @default.
- W2924254597 cites W2055428026 @default.
- W2924254597 cites W2061933243 @default.
- W2924254597 cites W2078578402 @default.
- W2924254597 cites W2086066258 @default.
- W2924254597 cites W2116742973 @default.
- W2924254597 cites W2134152002 @default.
- W2924254597 cites W2295853480 @default.
- W2924254597 cites W2339121806 @default.
- W2924254597 cites W2464465375 @default.
- W2924254597 cites W2480431634 @default.
- W2924254597 cites W2738226240 @default.
- W2924254597 doi "https://doi.org/10.1007/978-3-030-14347-3_35" @default.
- W2924254597 hasPublicationYear "2019" @default.
- W2924254597 type Work @default.
- W2924254597 sameAs 2924254597 @default.
- W2924254597 citedByCount "0" @default.
- W2924254597 crossrefType "book-chapter" @default.
- W2924254597 hasAuthorship W2924254597A5004855404 @default.
- W2924254597 hasAuthorship W2924254597A5028843305 @default.
- W2924254597 hasAuthorship W2924254597A5044246017 @default.
- W2924254597 hasAuthorship W2924254597A5053275663 @default.
- W2924254597 hasAuthorship W2924254597A5064323494 @default.
- W2924254597 hasAuthorship W2924254597A5087542455 @default.
- W2924254597 hasAuthorship W2924254597A5089554235 @default.
- W2924254597 hasConcept C109718341 @default.
- W2924254597 hasConcept C113238511 @default.
- W2924254597 hasConcept C11413529 @default.
- W2924254597 hasConcept C119487961 @default.
- W2924254597 hasConcept C122357587 @default.
- W2924254597 hasConcept C126255220 @default.
- W2924254597 hasConcept C153180895 @default.
- W2924254597 hasConcept C154945302 @default.
- W2924254597 hasConcept C164866538 @default.
- W2924254597 hasConcept C199360897 @default.
- W2924254597 hasConcept C33923547 @default.
- W2924254597 hasConcept C41008148 @default.
- W2924254597 hasConcept C50644808 @default.
- W2924254597 hasConcept C85617194 @default.
- W2924254597 hasConcept C95623464 @default.
- W2924254597 hasConceptScore W2924254597C109718341 @default.
- W2924254597 hasConceptScore W2924254597C113238511 @default.
- W2924254597 hasConceptScore W2924254597C11413529 @default.
- W2924254597 hasConceptScore W2924254597C119487961 @default.
- W2924254597 hasConceptScore W2924254597C122357587 @default.
- W2924254597 hasConceptScore W2924254597C126255220 @default.
- W2924254597 hasConceptScore W2924254597C153180895 @default.
- W2924254597 hasConceptScore W2924254597C154945302 @default.
- W2924254597 hasConceptScore W2924254597C164866538 @default.
- W2924254597 hasConceptScore W2924254597C199360897 @default.
- W2924254597 hasConceptScore W2924254597C33923547 @default.
- W2924254597 hasConceptScore W2924254597C41008148 @default.
- W2924254597 hasConceptScore W2924254597C50644808 @default.
- W2924254597 hasConceptScore W2924254597C85617194 @default.
- W2924254597 hasConceptScore W2924254597C95623464 @default.
- W2924254597 hasLocation W29242545971 @default.
- W2924254597 hasOpenAccess W2924254597 @default.
- W2924254597 hasPrimaryLocation W29242545971 @default.
- W2924254597 hasRelatedWork W1557643299 @default.
- W2924254597 hasRelatedWork W1985435728 @default.
- W2924254597 hasRelatedWork W2005027335 @default.
- W2924254597 hasRelatedWork W2067879431 @default.
- W2924254597 hasRelatedWork W2073940253 @default.
- W2924254597 hasRelatedWork W2083945868 @default.
- W2924254597 hasRelatedWork W2092907329 @default.
- W2924254597 hasRelatedWork W2123762146 @default.
- W2924254597 hasRelatedWork W2127023476 @default.
- W2924254597 hasRelatedWork W2163634979 @default.
- W2924254597 hasRelatedWork W2169480110 @default.
- W2924254597 hasRelatedWork W2257597788 @default.
- W2924254597 hasRelatedWork W2355112821 @default.
- W2924254597 hasRelatedWork W2373827238 @default.
- W2924254597 hasRelatedWork W2388154885 @default.
- W2924254597 hasRelatedWork W2811080382 @default.
- W2924254597 hasRelatedWork W2947441756 @default.
- W2924254597 hasRelatedWork W2955413883 @default.
- W2924254597 hasRelatedWork W2969465910 @default.
- W2924254597 hasRelatedWork W982546311 @default.
- W2924254597 isParatext "false" @default.
- W2924254597 isRetracted "false" @default.
- W2924254597 magId "2924254597" @default.
- W2924254597 workType "book-chapter" @default.