Matches in SemOpenAlex for { <https://semopenalex.org/work/W2924259647> ?p ?o ?g. }
- W2924259647 endingPage "4059" @default.
- W2924259647 startingPage "4045" @default.
- W2924259647 abstract "Feature matching, which refers to establishing reliable correspondence between two sets of features, is a critical prerequisite in a wide spectrum of vision-based tasks. Existing attempts typically involve the mismatch removal from a set of putative matches based on estimating the underlying image transformation. However, the transformation could vary with different data. Thus, a pre-defined transformation model is often demanded, which severely limits the applicability. From a novel perspective, this paper casts the mismatch removal into a two-class classification problem, learning a general classifier to determine the correctness of an arbitrary putative match, termed as Learning for Mismatch Removal (LMR). The classifier is trained based on a general match representation associated with each putative match through exploiting the consensus of local neighborhood structures based on a multiple K -nearest neighbors strategy. With only ten training image pairs involving about 8000 putative matches, the learned classifier can generate promising matching results in linearithmic time complexity on arbitrary testing data. The generality and robustness of our approach are verified under several representative supervised learning techniques as well as on different training and testing data. Extensive experiments on feature matching, visual homing, and near-duplicate image retrieval are conducted to reveal the superiority of our LMR over the state-of-the-art competitors." @default.
- W2924259647 created "2019-04-01" @default.
- W2924259647 creator A5040010053 @default.
- W2924259647 creator A5060407786 @default.
- W2924259647 creator A5087165831 @default.
- W2924259647 creator A5090356888 @default.
- W2924259647 date "2019-08-01" @default.
- W2924259647 modified "2023-10-15" @default.
- W2924259647 title "LMR: Learning a Two-Class Classifier for Mismatch Removal" @default.
- W2924259647 cites W1559169059 @default.
- W2924259647 cites W1561797649 @default.
- W2924259647 cites W166547715 @default.
- W2924259647 cites W1744214816 @default.
- W2924259647 cites W1762798876 @default.
- W2924259647 cites W1869500417 @default.
- W2924259647 cites W1955055330 @default.
- W2924259647 cites W1980911747 @default.
- W2924259647 cites W2005720384 @default.
- W2924259647 cites W2015741635 @default.
- W2924259647 cites W2029065223 @default.
- W2924259647 cites W2046434485 @default.
- W2924259647 cites W2049981393 @default.
- W2924259647 cites W2051470489 @default.
- W2924259647 cites W2066941820 @default.
- W2924259647 cites W2070789837 @default.
- W2924259647 cites W2071730188 @default.
- W2924259647 cites W2085261163 @default.
- W2924259647 cites W2088181253 @default.
- W2924259647 cites W2089044762 @default.
- W2924259647 cites W2098789800 @default.
- W2924259647 cites W2098894541 @default.
- W2924259647 cites W2099606917 @default.
- W2924259647 cites W2104853049 @default.
- W2924259647 cites W2106044718 @default.
- W2924259647 cites W2106199912 @default.
- W2924259647 cites W2114354851 @default.
- W2924259647 cites W2115003579 @default.
- W2924259647 cites W2116801532 @default.
- W2924259647 cites W2117228865 @default.
- W2924259647 cites W2119605622 @default.
- W2924259647 cites W2120501941 @default.
- W2924259647 cites W2124141313 @default.
- W2924259647 cites W2130871783 @default.
- W2924259647 cites W2134236847 @default.
- W2924259647 cites W2137983211 @default.
- W2924259647 cites W2145232418 @default.
- W2924259647 cites W2149259880 @default.
- W2924259647 cites W2150190641 @default.
- W2924259647 cites W2151103935 @default.
- W2924259647 cites W2157656099 @default.
- W2924259647 cites W2160821342 @default.
- W2924259647 cites W2165558283 @default.
- W2924259647 cites W2166820607 @default.
- W2924259647 cites W2171448996 @default.
- W2924259647 cites W2171490473 @default.
- W2924259647 cites W2171835940 @default.
- W2924259647 cites W2194775991 @default.
- W2924259647 cites W2217115543 @default.
- W2924259647 cites W2272455514 @default.
- W2924259647 cites W2323100677 @default.
- W2924259647 cites W2338968644 @default.
- W2924259647 cites W2340296683 @default.
- W2924259647 cites W2344328023 @default.
- W2924259647 cites W2369976370 @default.
- W2924259647 cites W2424774509 @default.
- W2924259647 cites W2489822048 @default.
- W2924259647 cites W2514391226 @default.
- W2924259647 cites W2520553119 @default.
- W2924259647 cites W2533007775 @default.
- W2924259647 cites W2553530591 @default.
- W2924259647 cites W2579352318 @default.
- W2924259647 cites W2609883120 @default.
- W2924259647 cites W2613783066 @default.
- W2924259647 cites W2735299109 @default.
- W2924259647 cites W2737094507 @default.
- W2924259647 cites W2737260104 @default.
- W2924259647 cites W2740578684 @default.
- W2924259647 cites W2754925132 @default.
- W2924259647 cites W2766752234 @default.
- W2924259647 cites W2774960351 @default.
- W2924259647 cites W2798720196 @default.
- W2924259647 cites W2800324071 @default.
- W2924259647 cites W2898541470 @default.
- W2924259647 cites W2951060728 @default.
- W2924259647 cites W2962843082 @default.
- W2924259647 cites W2962941647 @default.
- W2924259647 cites W2963150697 @default.
- W2924259647 cites W2963674285 @default.
- W2924259647 cites W2964347182 @default.
- W2924259647 cites W3098269293 @default.
- W2924259647 cites W59289346 @default.
- W2924259647 doi "https://doi.org/10.1109/tip.2019.2906490" @default.
- W2924259647 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30908218" @default.
- W2924259647 hasPublicationYear "2019" @default.
- W2924259647 type Work @default.
- W2924259647 sameAs 2924259647 @default.
- W2924259647 citedByCount "151" @default.
- W2924259647 countsByYear W29242596472019 @default.