Matches in SemOpenAlex for { <https://semopenalex.org/work/W2924332949> ?p ?o ?g. }
- W2924332949 abstract "Abstract Conservation of energy to support growth solely from extracellular electron transfer was demonstrated for the first time in a methanogen. Methanosarcina acetivorans grew with methanol as the sole electron donor and the extracellular electron acceptor anthraquione-2,6-disulfonate (AQDS) as the sole electron acceptor when methane production was inhibited with bromoethanesulfonate. Transcriptomics revealed that transcripts for the gene for the transmembrane, multi-heme, c -type cytochrome MmcA were 4-fold higher in AQDS-respiring cells versus methanogenic cells. A strain in which the gene for MmcA was deleted failed to grow via AQDS reduction whereas strains in which other cytochrome genes were deleted grew as well as the wild-type strain. The MmcA-deficient strain grew with the conversion of methanol or acetate to methane, suggesting that MmcA has a specialized role as a conduit for extracellular electron transfer. Enhanced expression of genes for methanol conversion to methyl-coenzyme M and components of the Rnf complex suggested that methanol is oxidized to carbon dioxide in AQDS-respiring cells through a pathway that is similar to methyl-coenezyme M oxidation in methanogenic cells. However, during AQDS respiration the Rnf complex and reduced methanophenazine probably transfer electrons to MmcA, which functions as the terminal reductase for AQDS reduction. Extracellular electron transfer may enable survival of methanogens in dynamic environments in which oxidized humic substances and Fe(III) oxides are intermittently available. The availability of tools for genetic manipulation of M. acetivorans makes it an excellent model microbe for evaluating c -type cytochrome-dependent extracellular electron transfer in Archaea. Importance Extracellular electron exchange in Methanosarcina species and closely related Archaea plays an important role in the global carbon cycle and can enhance the speed and stability of anaerobic digestion, an important bioenergy strategy. The potential importance of c -type cytochromes for extracellular electron transfer to syntrophic bacterial partners and/or Fe(III) minerals in some Archaea has been suspected for some time, but the studies with Methanosarcina acetivorans reported here provide the first genetic evidence supporting this hypothesis. The results suggest parallels with Gram-negative bacteria, such as Shewanella and Geobacter species, in which outer-surface c -type cytochromes are an essential component for electrical communication with the extracellular environment. M. acetivorans offers an unprecedented opportunity to study mechanisms for energy conservation from the anaerobic oxidation of one-carbon organic compounds coupled to extracellular electron transfer in Archaea with implications not only for methanogens, but possibly also for anaerobic methane oxidation." @default.
- W2924332949 created "2019-04-01" @default.
- W2924332949 creator A5019756877 @default.
- W2924332949 creator A5021568652 @default.
- W2924332949 creator A5024267714 @default.
- W2924332949 creator A5029301695 @default.
- W2924332949 creator A5034043242 @default.
- W2924332949 creator A5044954217 @default.
- W2924332949 creator A5052705284 @default.
- W2924332949 date "2019-03-26" @default.
- W2924332949 modified "2023-09-28" @default.
- W2924332949 title "A Membrane-Bound Cytochrome EnablesMethanosarcina acetivoransto Conserve Energy to Support Growth from Extracellular Electron Transfer" @default.
- W2924332949 cites W1484487420 @default.
- W2924332949 cites W1506593776 @default.
- W2924332949 cites W1599292060 @default.
- W2924332949 cites W1809341209 @default.
- W2924332949 cites W1908700796 @default.
- W2924332949 cites W1914559929 @default.
- W2924332949 cites W1963740551 @default.
- W2924332949 cites W1980929310 @default.
- W2924332949 cites W1981851600 @default.
- W2924332949 cites W1988880364 @default.
- W2924332949 cites W1990585684 @default.
- W2924332949 cites W1991617851 @default.
- W2924332949 cites W1992441512 @default.
- W2924332949 cites W1996339982 @default.
- W2924332949 cites W1997480992 @default.
- W2924332949 cites W1998607055 @default.
- W2924332949 cites W2001346431 @default.
- W2924332949 cites W2004251815 @default.
- W2924332949 cites W2013498587 @default.
- W2924332949 cites W2017900394 @default.
- W2924332949 cites W2023023571 @default.
- W2924332949 cites W2026511569 @default.
- W2924332949 cites W2028352375 @default.
- W2924332949 cites W2033173310 @default.
- W2924332949 cites W2034074974 @default.
- W2924332949 cites W2037801198 @default.
- W2924332949 cites W2047304632 @default.
- W2924332949 cites W2056698816 @default.
- W2924332949 cites W2059294660 @default.
- W2924332949 cites W2062114257 @default.
- W2924332949 cites W2085556465 @default.
- W2924332949 cites W2087438927 @default.
- W2924332949 cites W2094201044 @default.
- W2924332949 cites W2095915711 @default.
- W2924332949 cites W2097870001 @default.
- W2924332949 cites W2103536675 @default.
- W2924332949 cites W2108797154 @default.
- W2924332949 cites W2114104545 @default.
- W2924332949 cites W2119148412 @default.
- W2924332949 cites W2120566576 @default.
- W2924332949 cites W2121766793 @default.
- W2924332949 cites W2124799197 @default.
- W2924332949 cites W2125593338 @default.
- W2924332949 cites W2125609193 @default.
- W2924332949 cites W2130374652 @default.
- W2924332949 cites W2131256711 @default.
- W2924332949 cites W2131271579 @default.
- W2924332949 cites W2133003046 @default.
- W2924332949 cites W2138101071 @default.
- W2924332949 cites W2139066998 @default.
- W2924332949 cites W2140860400 @default.
- W2924332949 cites W2144379882 @default.
- W2924332949 cites W2146237019 @default.
- W2924332949 cites W2147523717 @default.
- W2924332949 cites W2148772877 @default.
- W2924332949 cites W2149096603 @default.
- W2924332949 cites W2149505266 @default.
- W2924332949 cites W2151714294 @default.
- W2924332949 cites W2152752596 @default.
- W2924332949 cites W2152770371 @default.
- W2924332949 cites W2153544371 @default.
- W2924332949 cites W2154431984 @default.
- W2924332949 cites W2157107905 @default.
- W2924332949 cites W2158491612 @default.
- W2924332949 cites W2162792752 @default.
- W2924332949 cites W2164513556 @default.
- W2924332949 cites W2165657679 @default.
- W2924332949 cites W2168133883 @default.
- W2924332949 cites W2224056471 @default.
- W2924332949 cites W2239706731 @default.
- W2924332949 cites W2259792312 @default.
- W2924332949 cites W2518467579 @default.
- W2924332949 cites W2544432107 @default.
- W2924332949 cites W2570567209 @default.
- W2924332949 cites W2592448201 @default.
- W2924332949 cites W2594765776 @default.
- W2924332949 cites W2596543814 @default.
- W2924332949 cites W2610437230 @default.
- W2924332949 cites W2762891856 @default.
- W2924332949 cites W2793160680 @default.
- W2924332949 cites W2797728581 @default.
- W2924332949 cites W2800229091 @default.
- W2924332949 cites W3173624724 @default.
- W2924332949 cites W4230236652 @default.
- W2924332949 cites W82383392 @default.
- W2924332949 cites W83991843 @default.
- W2924332949 doi "https://doi.org/10.1101/590380" @default.
- W2924332949 hasPublicationYear "2019" @default.