Matches in SemOpenAlex for { <https://semopenalex.org/work/W2924453407> ?p ?o ?g. }
- W2924453407 endingPage "510" @default.
- W2924453407 startingPage "499" @default.
- W2924453407 abstract "Anomaly in mechanical systems may cause equipment to break down with serious safety, environment, and economic impact. Since many mechanical equipment usually operates under tough working environments, which makes them vulnerable to types of faults, anomaly detection for mechanical equipment usually requires considerable domain knowledge. However, a common dilemma in many practical applications is that one may not be able to obtain the empirical knowledge about anomaly or the history data is completely unlabelled, which makes conventional fault identification methods not applicable. In order to fill the gap, this paper proposes a novel deep learning–based method for anomaly detection in mechanical equipment by combining two types of deep learning architectures, stacked autoencoders (SAE) and long short-term memory (LSTM) neural networks, to identify anomaly condition in a completely unsupervised manner. The proposed method focuses on the anomaly detection through multiple features sequence when the history data is unlabelled and the empirical knowledge about anomaly is absent. An experiment for anomaly detection in rotary machinery through wavelet packet decomposition (WPD) and data-driven models demonstrates the efficiency and stability of the proposed approach. The method can be divided into two stages: SAE-based multiple features sequence representation and LSTM-based anomaly identification. During the experiment, fivefold cross-validation has been applied to validate the performance and stability of the proposed approach. The results show that the proposed approach could detect anomaly working condition with 99% accuracy under a completely unsupervised learning environment and offer an alternative method to leverage and integrate features for anomaly detection without empirical knowledge." @default.
- W2924453407 created "2019-04-01" @default.
- W2924453407 creator A5007988448 @default.
- W2924453407 creator A5023826377 @default.
- W2924453407 creator A5067021027 @default.
- W2924453407 creator A5090692315 @default.
- W2924453407 date "2019-03-22" @default.
- W2924453407 modified "2023-10-16" @default.
- W2924453407 title "A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment" @default.
- W2924453407 cites W1130320950 @default.
- W2924453407 cites W1597576211 @default.
- W2924453407 cites W1689711448 @default.
- W2924453407 cites W1969176937 @default.
- W2924453407 cites W1975174639 @default.
- W2924453407 cites W1990422817 @default.
- W2924453407 cites W1999649259 @default.
- W2924453407 cites W2004353783 @default.
- W2924453407 cites W2018108285 @default.
- W2924453407 cites W2028119131 @default.
- W2924453407 cites W2035883480 @default.
- W2924453407 cites W2037411704 @default.
- W2924453407 cites W2043624558 @default.
- W2924453407 cites W2064675550 @default.
- W2924453407 cites W2074349894 @default.
- W2924453407 cites W2076063813 @default.
- W2924453407 cites W2078620321 @default.
- W2924453407 cites W2095905361 @default.
- W2924453407 cites W2111996283 @default.
- W2924453407 cites W2160987092 @default.
- W2924453407 cites W2163922914 @default.
- W2924453407 cites W2293634267 @default.
- W2924453407 cites W2294864664 @default.
- W2924453407 cites W2341973567 @default.
- W2924453407 cites W2423195739 @default.
- W2924453407 cites W2480364715 @default.
- W2924453407 cites W2580840020 @default.
- W2924453407 cites W2596706891 @default.
- W2924453407 cites W2604162004 @default.
- W2924453407 cites W2617792681 @default.
- W2924453407 cites W2735269471 @default.
- W2924453407 cites W2765863015 @default.
- W2924453407 cites W2767761606 @default.
- W2924453407 cites W2781369588 @default.
- W2924453407 cites W2781420345 @default.
- W2924453407 cites W2808548605 @default.
- W2924453407 cites W2810032703 @default.
- W2924453407 cites W2896708640 @default.
- W2924453407 cites W2964185501 @default.
- W2924453407 doi "https://doi.org/10.1007/s00170-019-03557-w" @default.
- W2924453407 hasPublicationYear "2019" @default.
- W2924453407 type Work @default.
- W2924453407 sameAs 2924453407 @default.
- W2924453407 citedByCount "85" @default.
- W2924453407 countsByYear W29244534072019 @default.
- W2924453407 countsByYear W29244534072020 @default.
- W2924453407 countsByYear W29244534072021 @default.
- W2924453407 countsByYear W29244534072022 @default.
- W2924453407 countsByYear W29244534072023 @default.
- W2924453407 crossrefType "journal-article" @default.
- W2924453407 hasAuthorship W2924453407A5007988448 @default.
- W2924453407 hasAuthorship W2924453407A5023826377 @default.
- W2924453407 hasAuthorship W2924453407A5067021027 @default.
- W2924453407 hasAuthorship W2924453407A5090692315 @default.
- W2924453407 hasBestOaLocation W29244534072 @default.
- W2924453407 hasConcept C108583219 @default.
- W2924453407 hasConcept C119857082 @default.
- W2924453407 hasConcept C121332964 @default.
- W2924453407 hasConcept C127413603 @default.
- W2924453407 hasConcept C12997251 @default.
- W2924453407 hasConcept C153180895 @default.
- W2924453407 hasConcept C154945302 @default.
- W2924453407 hasConcept C26873012 @default.
- W2924453407 hasConcept C41008148 @default.
- W2924453407 hasConcept C739882 @default.
- W2924453407 hasConceptScore W2924453407C108583219 @default.
- W2924453407 hasConceptScore W2924453407C119857082 @default.
- W2924453407 hasConceptScore W2924453407C121332964 @default.
- W2924453407 hasConceptScore W2924453407C127413603 @default.
- W2924453407 hasConceptScore W2924453407C12997251 @default.
- W2924453407 hasConceptScore W2924453407C153180895 @default.
- W2924453407 hasConceptScore W2924453407C154945302 @default.
- W2924453407 hasConceptScore W2924453407C26873012 @default.
- W2924453407 hasConceptScore W2924453407C41008148 @default.
- W2924453407 hasConceptScore W2924453407C739882 @default.
- W2924453407 hasFunder F4320322885 @default.
- W2924453407 hasIssue "1-4" @default.
- W2924453407 hasLocation W29244534071 @default.
- W2924453407 hasLocation W29244534072 @default.
- W2924453407 hasOpenAccess W2924453407 @default.
- W2924453407 hasPrimaryLocation W29244534071 @default.
- W2924453407 hasRelatedWork W2773120646 @default.
- W2924453407 hasRelatedWork W3014300295 @default.
- W2924453407 hasRelatedWork W3044458868 @default.
- W2924453407 hasRelatedWork W3164822677 @default.
- W2924453407 hasRelatedWork W4223943233 @default.
- W2924453407 hasRelatedWork W4225161397 @default.
- W2924453407 hasRelatedWork W4285195761 @default.
- W2924453407 hasRelatedWork W4299487748 @default.