Matches in SemOpenAlex for { <https://semopenalex.org/work/W2924944420> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2924944420 endingPage "86" @default.
- W2924944420 startingPage "72" @default.
- W2924944420 abstract "Abstract The development of accurate forecasting systems can be challenging in real-world applications. The modeling of real-world time series is a particularly difficult task because they are generally composed of linear and nonlinear patterns that are combined in some form. Several hybrid systems that combine linear and nonlinear techniques have obtained relevant results in terms of accuracy in comparison with single models. However, the best combination function of the forecasting of the linear and nonlinear patterns is unknown, which makes this modeling an open question. This work proposes a hybrid system that searches for a suitable function to combine the forecasts of linear and nonlinear models. Thus, the proposed system performs: (i) linear modeling of the time series; (ii) nonlinear modeling of the error series; and (iii) a data-driven combination that searches for: (iii.a) the most suitable function, between linear and nonlinear formalisms, and (iii.b) the number of forecasts of models (i) and (ii) that maximizes the performance of the combination. Two versions of the hybrid system are evaluated. In both versions, the ARIMA model is used in step (i) and two nonlinear intelligent models – Multi-Layer Perceptron (MLP) and Support Vector Regression (SVR) – are used in steps (ii) and (iii), alternately. Experimental simulations with six real-world complex time series that are well-known in the literature are evaluated using a set of popular performance metrics. Our results show that the proposed hybrid system attains superior performance when compared with single and hybrid models in the literature." @default.
- W2924944420 created "2019-04-01" @default.
- W2924944420 creator A5028640369 @default.
- W2924944420 creator A5029164446 @default.
- W2924944420 creator A5042863166 @default.
- W2924944420 date "2019-07-01" @default.
- W2924944420 modified "2023-10-17" @default.
- W2924944420 title "An intelligent hybridization of ARIMA with machine learning models for time series forecasting" @default.
- W2924944420 cites W1586335931 @default.
- W2924944420 cites W1980933792 @default.
- W2924944420 cites W1984755515 @default.
- W2924944420 cites W1986078433 @default.
- W2924944420 cites W1986528915 @default.
- W2924944420 cites W1989130706 @default.
- W2924944420 cites W1997281913 @default.
- W2924944420 cites W2000765441 @default.
- W2924944420 cites W2002667857 @default.
- W2924944420 cites W2003502537 @default.
- W2924944420 cites W2011787805 @default.
- W2924944420 cites W2013472039 @default.
- W2924944420 cites W2028068740 @default.
- W2924944420 cites W2059804518 @default.
- W2924944420 cites W2070986256 @default.
- W2924944420 cites W2091409464 @default.
- W2924944420 cites W2111395484 @default.
- W2924944420 cites W2116512828 @default.
- W2924944420 cites W2117014758 @default.
- W2924944420 cites W2123513648 @default.
- W2924944420 cites W2148599483 @default.
- W2924944420 cites W2149905014 @default.
- W2924944420 cites W2405547796 @default.
- W2924944420 cites W2510651935 @default.
- W2924944420 cites W2586095906 @default.
- W2924944420 cites W2604864721 @default.
- W2924944420 cites W2625179406 @default.
- W2924944420 cites W2750787742 @default.
- W2924944420 cites W2758567761 @default.
- W2924944420 cites W2792578766 @default.
- W2924944420 cites W1993387039 @default.
- W2924944420 doi "https://doi.org/10.1016/j.knosys.2019.03.011" @default.
- W2924944420 hasPublicationYear "2019" @default.
- W2924944420 type Work @default.
- W2924944420 sameAs 2924944420 @default.
- W2924944420 citedByCount "96" @default.
- W2924944420 countsByYear W29249444202019 @default.
- W2924944420 countsByYear W29249444202020 @default.
- W2924944420 countsByYear W29249444202021 @default.
- W2924944420 countsByYear W29249444202022 @default.
- W2924944420 countsByYear W29249444202023 @default.
- W2924944420 crossrefType "journal-article" @default.
- W2924944420 hasAuthorship W2924944420A5028640369 @default.
- W2924944420 hasAuthorship W2924944420A5029164446 @default.
- W2924944420 hasAuthorship W2924944420A5042863166 @default.
- W2924944420 hasConcept C119857082 @default.
- W2924944420 hasConcept C124101348 @default.
- W2924944420 hasConcept C143724316 @default.
- W2924944420 hasConcept C151406439 @default.
- W2924944420 hasConcept C151730666 @default.
- W2924944420 hasConcept C154945302 @default.
- W2924944420 hasConcept C24338571 @default.
- W2924944420 hasConcept C41008148 @default.
- W2924944420 hasConcept C86803240 @default.
- W2924944420 hasConceptScore W2924944420C119857082 @default.
- W2924944420 hasConceptScore W2924944420C124101348 @default.
- W2924944420 hasConceptScore W2924944420C143724316 @default.
- W2924944420 hasConceptScore W2924944420C151406439 @default.
- W2924944420 hasConceptScore W2924944420C151730666 @default.
- W2924944420 hasConceptScore W2924944420C154945302 @default.
- W2924944420 hasConceptScore W2924944420C24338571 @default.
- W2924944420 hasConceptScore W2924944420C41008148 @default.
- W2924944420 hasConceptScore W2924944420C86803240 @default.
- W2924944420 hasFunder F4320321091 @default.
- W2924944420 hasLocation W29249444201 @default.
- W2924944420 hasOpenAccess W2924944420 @default.
- W2924944420 hasPrimaryLocation W29249444201 @default.
- W2924944420 hasRelatedWork W1533933925 @default.
- W2924944420 hasRelatedWork W1535527311 @default.
- W2924944420 hasRelatedWork W1610502790 @default.
- W2924944420 hasRelatedWork W1714597287 @default.
- W2924944420 hasRelatedWork W1784207256 @default.
- W2924944420 hasRelatedWork W2009201399 @default.
- W2924944420 hasRelatedWork W2392786278 @default.
- W2924944420 hasRelatedWork W2906471315 @default.
- W2924944420 hasRelatedWork W2978379537 @default.
- W2924944420 hasRelatedWork W3116240832 @default.
- W2924944420 hasVolume "175" @default.
- W2924944420 isParatext "false" @default.
- W2924944420 isRetracted "false" @default.
- W2924944420 magId "2924944420" @default.
- W2924944420 workType "article" @default.