Matches in SemOpenAlex for { <https://semopenalex.org/work/W2925162041> ?p ?o ?g. }
- W2925162041 endingPage "52" @default.
- W2925162041 startingPage "39" @default.
- W2925162041 abstract "Ordinal data are common in many data mining and machine learning tasks. Compared to nominal data, the possible values (also called categories interchangeably) of an ordinal attribute are naturally ordered. Nevertheless, since the data values are not quantitative, the distance between two categories of an ordinal attribute is generally not well defined, which surely has a serious impact on the result of the quantitative analysis if an inappropriate distance metric is utilized. From the practical perspective, ordinal-and-nominal-attribute categorical data, i.e., categorical data associated with a mixture of nominal and ordinal attributes, is common, but the distance metric for such data has yet to be well explored in the literature. In this paper, within the framework of clustering analysis, we therefore first propose an entropy-based distance metric for ordinal attributes, which exploits the underlying order information among categories of an ordinal attribute for the distance measurement. Then, we generalize this distance metric and propose a unified one accordingly, which is applicable to ordinal-and-nominal-attribute categorical data. Compared with the existing metrics proposed for categorical data, the proposed metric is simple to use and nonparametric. More importantly, it reasonably exploits the underlying order information of ordinal attributes and statistical information of nominal attributes for distance measurement. Extensive experiments show that the proposed metric outperforms the existing counterparts on both the real and benchmark data sets." @default.
- W2925162041 created "2019-04-01" @default.
- W2925162041 creator A5007587959 @default.
- W2925162041 creator A5025285243 @default.
- W2925162041 creator A5038516431 @default.
- W2925162041 date "2020-01-01" @default.
- W2925162041 modified "2023-10-15" @default.
- W2925162041 title "A Unified Entropy-Based Distance Metric for Ordinal-and-Nominal-Attribute Data Clustering" @default.
- W2925162041 cites W1562135275 @default.
- W2925162041 cites W1584845053 @default.
- W2925162041 cites W1605406256 @default.
- W2925162041 cites W1762161369 @default.
- W2925162041 cites W1965555277 @default.
- W2925162041 cites W1973837973 @default.
- W2925162041 cites W1975464269 @default.
- W2925162041 cites W1981036287 @default.
- W2925162041 cites W1982658582 @default.
- W2925162041 cites W1985514943 @default.
- W2925162041 cites W1990643970 @default.
- W2925162041 cites W1995875735 @default.
- W2925162041 cites W2009088607 @default.
- W2925162041 cites W2022886975 @default.
- W2925162041 cites W2035750819 @default.
- W2925162041 cites W2040138869 @default.
- W2925162041 cites W2047878524 @default.
- W2925162041 cites W2050797895 @default.
- W2925162041 cites W2051958371 @default.
- W2925162041 cites W2061879449 @default.
- W2925162041 cites W2066807567 @default.
- W2925162041 cites W2078483536 @default.
- W2925162041 cites W2087360521 @default.
- W2925162041 cites W2103000160 @default.
- W2925162041 cites W2112468092 @default.
- W2925162041 cites W2120887445 @default.
- W2925162041 cites W2125070513 @default.
- W2925162041 cites W2132149726 @default.
- W2925162041 cites W2143687373 @default.
- W2925162041 cites W2149230623 @default.
- W2925162041 cites W2158012006 @default.
- W2925162041 cites W2171832470 @default.
- W2925162041 cites W2338257905 @default.
- W2925162041 cites W2339785805 @default.
- W2925162041 cites W2342204193 @default.
- W2925162041 cites W2480455979 @default.
- W2925162041 cites W2743926534 @default.
- W2925162041 cites W4234315553 @default.
- W2925162041 cites W4244030505 @default.
- W2925162041 doi "https://doi.org/10.1109/tnnls.2019.2899381" @default.
- W2925162041 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30908240" @default.
- W2925162041 hasPublicationYear "2020" @default.
- W2925162041 type Work @default.
- W2925162041 sameAs 2925162041 @default.
- W2925162041 citedByCount "17" @default.
- W2925162041 countsByYear W29251620412020 @default.
- W2925162041 countsByYear W29251620412021 @default.
- W2925162041 countsByYear W29251620412022 @default.
- W2925162041 countsByYear W29251620412023 @default.
- W2925162041 crossrefType "journal-article" @default.
- W2925162041 hasAuthorship W2925162041A5007587959 @default.
- W2925162041 hasAuthorship W2925162041A5025285243 @default.
- W2925162041 hasAuthorship W2925162041A5038516431 @default.
- W2925162041 hasConcept C102366305 @default.
- W2925162041 hasConcept C105795698 @default.
- W2925162041 hasConcept C106301342 @default.
- W2925162041 hasConcept C110313322 @default.
- W2925162041 hasConcept C121332964 @default.
- W2925162041 hasConcept C124101348 @default.
- W2925162041 hasConcept C153180895 @default.
- W2925162041 hasConcept C154945302 @default.
- W2925162041 hasConcept C162324750 @default.
- W2925162041 hasConcept C176217482 @default.
- W2925162041 hasConcept C21547014 @default.
- W2925162041 hasConcept C33923547 @default.
- W2925162041 hasConcept C41008148 @default.
- W2925162041 hasConcept C5274069 @default.
- W2925162041 hasConcept C62520636 @default.
- W2925162041 hasConcept C73555534 @default.
- W2925162041 hasConcept C81386100 @default.
- W2925162041 hasConcept C85461838 @default.
- W2925162041 hasConceptScore W2925162041C102366305 @default.
- W2925162041 hasConceptScore W2925162041C105795698 @default.
- W2925162041 hasConceptScore W2925162041C106301342 @default.
- W2925162041 hasConceptScore W2925162041C110313322 @default.
- W2925162041 hasConceptScore W2925162041C121332964 @default.
- W2925162041 hasConceptScore W2925162041C124101348 @default.
- W2925162041 hasConceptScore W2925162041C153180895 @default.
- W2925162041 hasConceptScore W2925162041C154945302 @default.
- W2925162041 hasConceptScore W2925162041C162324750 @default.
- W2925162041 hasConceptScore W2925162041C176217482 @default.
- W2925162041 hasConceptScore W2925162041C21547014 @default.
- W2925162041 hasConceptScore W2925162041C33923547 @default.
- W2925162041 hasConceptScore W2925162041C41008148 @default.
- W2925162041 hasConceptScore W2925162041C5274069 @default.
- W2925162041 hasConceptScore W2925162041C62520636 @default.
- W2925162041 hasConceptScore W2925162041C73555534 @default.
- W2925162041 hasConceptScore W2925162041C81386100 @default.
- W2925162041 hasConceptScore W2925162041C85461838 @default.
- W2925162041 hasFunder F4320320955 @default.