Matches in SemOpenAlex for { <https://semopenalex.org/work/W2925495008> ?p ?o ?g. }
- W2925495008 endingPage "5199" @default.
- W2925495008 startingPage "5191" @default.
- W2925495008 abstract "Untargeted metabolomic measurements using mass spectrometry are a powerful tool for uncovering new small molecules with environmental and biological importance. The small molecule identification step, however, still remains an enormous challenge due to fragmentation difficulties or unspecific fragment ion information. Current methods to address this challenge are often dependent on databases or require the use of nuclear magnetic resonance (NMR), which have their own difficulties. The use of the gas-phase collision cross section (CCS) values obtained from ion mobility spectrometry (IMS) measurements were recently demonstrated to reduce the number of false positive metabolite identifications. While promising, the amount of empirical CCS information currently available is limited, thus predictive CCS methods need to be developed. In this article, we expand upon current experimental IMS capabilities by predicting the CCS values using a deep learning algorithm. We successfully developed and trained a prediction model for CCS values requiring only information about a compound's SMILES notation and ion type. The use of data from five different laboratories using different instruments allowed the algorithm to be trained and tested on more than 2400 molecules. The resulting CCS predictions were found to achieve a coefficient of determination of 0.97 and median relative error of 2.7% for a wide range of molecules. Furthermore, the method requires only a small amount of processing power to predict CCS values. Considering the performance, time, and resources necessary, as well as its applicability to a variety of molecules, this model was able to outperform all currently available CCS prediction algorithms." @default.
- W2925495008 created "2019-04-11" @default.
- W2925495008 creator A5005697074 @default.
- W2925495008 creator A5008649323 @default.
- W2925495008 creator A5018799250 @default.
- W2925495008 creator A5034069136 @default.
- W2925495008 creator A5036228441 @default.
- W2925495008 creator A5049730402 @default.
- W2925495008 creator A5054812796 @default.
- W2925495008 creator A5060603552 @default.
- W2925495008 date "2019-04-01" @default.
- W2925495008 modified "2023-10-17" @default.
- W2925495008 title "Predicting Ion Mobility Collision Cross-Sections Using a Deep Neural Network: DeepCCS" @default.
- W2925495008 cites W1611854178 @default.
- W2925495008 cites W1965038686 @default.
- W2925495008 cites W1971097535 @default.
- W2925495008 cites W1978235493 @default.
- W2925495008 cites W2015861736 @default.
- W2925495008 cites W2181856310 @default.
- W2925495008 cites W2331121748 @default.
- W2925495008 cites W2520784563 @default.
- W2925495008 cites W2536128108 @default.
- W2925495008 cites W2548357532 @default.
- W2925495008 cites W2580359618 @default.
- W2925495008 cites W2592708585 @default.
- W2925495008 cites W2617544335 @default.
- W2925495008 cites W2740955623 @default.
- W2925495008 cites W2740977550 @default.
- W2925495008 cites W2759637273 @default.
- W2925495008 cites W2767333346 @default.
- W2925495008 cites W2767683865 @default.
- W2925495008 cites W2772723798 @default.
- W2925495008 cites W2788511210 @default.
- W2925495008 cites W2790808809 @default.
- W2925495008 cites W2791355014 @default.
- W2925495008 cites W2887107671 @default.
- W2925495008 cites W2887285382 @default.
- W2925495008 cites W2887729144 @default.
- W2925495008 cites W2891411483 @default.
- W2925495008 cites W2900639329 @default.
- W2925495008 cites W2902734986 @default.
- W2925495008 cites W2903687253 @default.
- W2925495008 cites W2919115771 @default.
- W2925495008 doi "https://doi.org/10.1021/acs.analchem.8b05821" @default.
- W2925495008 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6628689" @default.
- W2925495008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30932474" @default.
- W2925495008 hasPublicationYear "2019" @default.
- W2925495008 type Work @default.
- W2925495008 sameAs 2925495008 @default.
- W2925495008 citedByCount "107" @default.
- W2925495008 countsByYear W29254950082019 @default.
- W2925495008 countsByYear W29254950082020 @default.
- W2925495008 countsByYear W29254950082021 @default.
- W2925495008 countsByYear W29254950082022 @default.
- W2925495008 countsByYear W29254950082023 @default.
- W2925495008 crossrefType "journal-article" @default.
- W2925495008 hasAuthorship W2925495008A5005697074 @default.
- W2925495008 hasAuthorship W2925495008A5008649323 @default.
- W2925495008 hasAuthorship W2925495008A5018799250 @default.
- W2925495008 hasAuthorship W2925495008A5034069136 @default.
- W2925495008 hasAuthorship W2925495008A5036228441 @default.
- W2925495008 hasAuthorship W2925495008A5049730402 @default.
- W2925495008 hasAuthorship W2925495008A5054812796 @default.
- W2925495008 hasAuthorship W2925495008A5060603552 @default.
- W2925495008 hasBestOaLocation W29254950082 @default.
- W2925495008 hasConcept C111919701 @default.
- W2925495008 hasConcept C121704057 @default.
- W2925495008 hasConcept C145148216 @default.
- W2925495008 hasConcept C15213710 @default.
- W2925495008 hasConcept C154945302 @default.
- W2925495008 hasConcept C159985019 @default.
- W2925495008 hasConcept C162356407 @default.
- W2925495008 hasConcept C178790620 @default.
- W2925495008 hasConcept C185592680 @default.
- W2925495008 hasConcept C186060115 @default.
- W2925495008 hasConcept C191015642 @default.
- W2925495008 hasConcept C192562407 @default.
- W2925495008 hasConcept C204323151 @default.
- W2925495008 hasConcept C38652104 @default.
- W2925495008 hasConcept C41008148 @default.
- W2925495008 hasConcept C43617362 @default.
- W2925495008 hasConcept C50644808 @default.
- W2925495008 hasConcept C86803240 @default.
- W2925495008 hasConceptScore W2925495008C111919701 @default.
- W2925495008 hasConceptScore W2925495008C121704057 @default.
- W2925495008 hasConceptScore W2925495008C145148216 @default.
- W2925495008 hasConceptScore W2925495008C15213710 @default.
- W2925495008 hasConceptScore W2925495008C154945302 @default.
- W2925495008 hasConceptScore W2925495008C159985019 @default.
- W2925495008 hasConceptScore W2925495008C162356407 @default.
- W2925495008 hasConceptScore W2925495008C178790620 @default.
- W2925495008 hasConceptScore W2925495008C185592680 @default.
- W2925495008 hasConceptScore W2925495008C186060115 @default.
- W2925495008 hasConceptScore W2925495008C191015642 @default.
- W2925495008 hasConceptScore W2925495008C192562407 @default.
- W2925495008 hasConceptScore W2925495008C204323151 @default.
- W2925495008 hasConceptScore W2925495008C38652104 @default.
- W2925495008 hasConceptScore W2925495008C41008148 @default.