Matches in SemOpenAlex for { <https://semopenalex.org/work/W2925667066> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2925667066 abstract "High Performance Computing (HPC) systems play an important role in advancing scientific research due to a significant demand for processing power and speed grows. In practice, HPC systems are in the spot of interest of different businesses which account on this growing technology. The growing complexity of the HPC systems made it exposed to a great range of performance anomalies. Permanent management of such systems health has a huge impact financially and operationally. Several machine learning techniques can be used to identify these performance anomalies in such complex systems. This study compares the most commonly used three supervised machine learning algorithms for anomaly detection. We had applied these algorithms on the Fundacion Publica Galega Centro Tecnoloxico de Supercomputacion de Galicia (CESGA) memcpy metrics which is a benchmark used to measure memory performance for each CPU socket. Our study shows that Neural Network algorithm had the highest accuracy (93%), KNN algorithm had the highest value of precision (0.97), Gaussian Anomaly Detection algorithm had the highest value of recall (0. 99), and Neural Network algorithm had the highest value of F-measure (0.96)." @default.
- W2925667066 created "2019-04-11" @default.
- W2925667066 creator A5043295987 @default.
- W2925667066 creator A5076160231 @default.
- W2925667066 creator A5091308112 @default.
- W2925667066 date "2019-03-17" @default.
- W2925667066 modified "2023-10-04" @default.
- W2925667066 title "Supervised Performance Anomaly Detection in HPC Data Centers" @default.
- W2925667066 cites W1975725126 @default.
- W2925667066 cites W2003797551 @default.
- W2925667066 cites W2122129277 @default.
- W2925667066 cites W2146292423 @default.
- W2925667066 cites W2613480438 @default.
- W2925667066 cites W2613580061 @default.
- W2925667066 cites W2620661538 @default.
- W2925667066 cites W2667207928 @default.
- W2925667066 cites W2963467342 @default.
- W2925667066 doi "https://doi.org/10.1007/978-3-030-14118-9_67" @default.
- W2925667066 hasPublicationYear "2019" @default.
- W2925667066 type Work @default.
- W2925667066 sameAs 2925667066 @default.
- W2925667066 citedByCount "2" @default.
- W2925667066 countsByYear W29256670662020 @default.
- W2925667066 countsByYear W29256670662021 @default.
- W2925667066 crossrefType "book-chapter" @default.
- W2925667066 hasAuthorship W2925667066A5043295987 @default.
- W2925667066 hasAuthorship W2925667066A5076160231 @default.
- W2925667066 hasAuthorship W2925667066A5091308112 @default.
- W2925667066 hasConcept C11413529 @default.
- W2925667066 hasConcept C119857082 @default.
- W2925667066 hasConcept C121332964 @default.
- W2925667066 hasConcept C124101348 @default.
- W2925667066 hasConcept C12997251 @default.
- W2925667066 hasConcept C13280743 @default.
- W2925667066 hasConcept C154945302 @default.
- W2925667066 hasConcept C173608175 @default.
- W2925667066 hasConcept C185798385 @default.
- W2925667066 hasConcept C205649164 @default.
- W2925667066 hasConcept C26873012 @default.
- W2925667066 hasConcept C2780009758 @default.
- W2925667066 hasConcept C41008148 @default.
- W2925667066 hasConcept C50644808 @default.
- W2925667066 hasConcept C739882 @default.
- W2925667066 hasConcept C83283714 @default.
- W2925667066 hasConceptScore W2925667066C11413529 @default.
- W2925667066 hasConceptScore W2925667066C119857082 @default.
- W2925667066 hasConceptScore W2925667066C121332964 @default.
- W2925667066 hasConceptScore W2925667066C124101348 @default.
- W2925667066 hasConceptScore W2925667066C12997251 @default.
- W2925667066 hasConceptScore W2925667066C13280743 @default.
- W2925667066 hasConceptScore W2925667066C154945302 @default.
- W2925667066 hasConceptScore W2925667066C173608175 @default.
- W2925667066 hasConceptScore W2925667066C185798385 @default.
- W2925667066 hasConceptScore W2925667066C205649164 @default.
- W2925667066 hasConceptScore W2925667066C26873012 @default.
- W2925667066 hasConceptScore W2925667066C2780009758 @default.
- W2925667066 hasConceptScore W2925667066C41008148 @default.
- W2925667066 hasConceptScore W2925667066C50644808 @default.
- W2925667066 hasConceptScore W2925667066C739882 @default.
- W2925667066 hasConceptScore W2925667066C83283714 @default.
- W2925667066 hasLocation W29256670661 @default.
- W2925667066 hasOpenAccess W2925667066 @default.
- W2925667066 hasPrimaryLocation W29256670661 @default.
- W2925667066 hasRelatedWork W1589384255 @default.
- W2925667066 hasRelatedWork W1677920909 @default.
- W2925667066 hasRelatedWork W2001325299 @default.
- W2925667066 hasRelatedWork W2011242639 @default.
- W2925667066 hasRelatedWork W2192928216 @default.
- W2925667066 hasRelatedWork W2225384674 @default.
- W2925667066 hasRelatedWork W2313186824 @default.
- W2925667066 hasRelatedWork W2383530445 @default.
- W2925667066 hasRelatedWork W2486505625 @default.
- W2925667066 hasRelatedWork W2514510339 @default.
- W2925667066 hasRelatedWork W2567513633 @default.
- W2925667066 hasRelatedWork W2581614494 @default.
- W2925667066 hasRelatedWork W2759941235 @default.
- W2925667066 hasRelatedWork W2886130359 @default.
- W2925667066 hasRelatedWork W2905104597 @default.
- W2925667066 hasRelatedWork W3010102451 @default.
- W2925667066 hasRelatedWork W3044263872 @default.
- W2925667066 hasRelatedWork W3072093803 @default.
- W2925667066 hasRelatedWork W3100251056 @default.
- W2925667066 hasRelatedWork W3155045530 @default.
- W2925667066 isParatext "false" @default.
- W2925667066 isRetracted "false" @default.
- W2925667066 magId "2925667066" @default.
- W2925667066 workType "book-chapter" @default.