Matches in SemOpenAlex for { <https://semopenalex.org/work/W2925754753> ?p ?o ?g. }
- W2925754753 endingPage "76" @default.
- W2925754753 startingPage "67" @default.
- W2925754753 abstract "Protein glycosylation is one of the most common and critical post-translational modification, which results from covalent attachment of carbohydrates to protein backbones. Glycosylation affects the physicochemical properties of proteins and potentially their function. Therefore it is important to establish analytical methods which can resolve glycoforms of glycoproteins. Recently, hydrophilic-interaction liquid chromatography (HILIC)-mass spectrometry has demonstrated to be a useful tool for the efficient separation and characterization of intact protein glycoforms. In particular, amide-based stationary phases in combination with acetonitrile-water gradients containing ion-pairing agents, have been used for the characterization of glycoproteins. However, finding the optimum gradient conditions for glycoform resolution can be quite tedious as shallow gradients (small decrease of acetonitrile percentage in the elution solvent over a long time) are required. In the present study, the retention mechanism and peak capacity of HILIC for non-glycosylated and glycosylated proteins were investigated and compared to reversed-phase liquid chromatography (RPLC). For both LC modes, ln k vs. φ plots of a series of test proteins were calculated using linear solvent strength (LSS) analysis. For RPLC, the plots were spread over a wider φ range than for HILIC, suggesting that HILIC methods require shallower gradients to resolve intact proteins. Next, the usefulness of computer-aided method development for the optimization of the separation of intact glycoform by HILIC was examined. Five retention models including LSS, adsorption, and mixed-mode, were tested to describe and predict glycoprotein retention under gradient conditions. The adsorption model appeared most suited and was applied to the gradient prediction for the separation of the glycoforms of six glycoproteins (Ides-digested trastuzumab, alpha-acid glycoprotein, ovalbumin, fetuin and thyroglobulin) employing the program PIOTR. Based on the results of three scouting gradients, conditions for high-efficiency separations of protein glycoforms varying in the degree and complexity of glycosylation was achieved, thereby significantly reducing the time needed for method optimization." @default.
- W2925754753 created "2019-04-11" @default.
- W2925754753 creator A5005199763 @default.
- W2925754753 creator A5027451267 @default.
- W2925754753 creator A5070362884 @default.
- W2925754753 creator A5087368205 @default.
- W2925754753 creator A5089528529 @default.
- W2925754753 date "2019-08-01" @default.
- W2925754753 modified "2023-10-18" @default.
- W2925754753 title "Computer-aided gradient optimization of hydrophilic interaction liquid chromatographic separations of intact proteins and protein glycoforms" @default.
- W2925754753 cites W1967824448 @default.
- W2925754753 cites W1967961992 @default.
- W2925754753 cites W1977977395 @default.
- W2925754753 cites W1978017104 @default.
- W2925754753 cites W1985491803 @default.
- W2925754753 cites W1987525830 @default.
- W2925754753 cites W1994985785 @default.
- W2925754753 cites W2007527241 @default.
- W2925754753 cites W2008406923 @default.
- W2925754753 cites W2011540538 @default.
- W2925754753 cites W2012671659 @default.
- W2925754753 cites W2015466408 @default.
- W2925754753 cites W2034356373 @default.
- W2925754753 cites W2050078913 @default.
- W2925754753 cites W2058128046 @default.
- W2925754753 cites W2065331767 @default.
- W2925754753 cites W2079376233 @default.
- W2925754753 cites W2080487519 @default.
- W2925754753 cites W2082123415 @default.
- W2925754753 cites W2090990246 @default.
- W2925754753 cites W2094776210 @default.
- W2925754753 cites W2126139276 @default.
- W2925754753 cites W2139196828 @default.
- W2925754753 cites W2140308322 @default.
- W2925754753 cites W2156979594 @default.
- W2925754753 cites W2257651778 @default.
- W2925754753 cites W2259315544 @default.
- W2925754753 cites W2298016747 @default.
- W2925754753 cites W2319029959 @default.
- W2925754753 cites W2326801645 @default.
- W2925754753 cites W2334343253 @default.
- W2925754753 cites W2343720094 @default.
- W2925754753 cites W2343734409 @default.
- W2925754753 cites W2429591244 @default.
- W2925754753 cites W2511963915 @default.
- W2925754753 cites W2576654980 @default.
- W2925754753 cites W2621340262 @default.
- W2925754753 cites W2625410898 @default.
- W2925754753 cites W2767373109 @default.
- W2925754753 cites W2768727863 @default.
- W2925754753 cites W2768767466 @default.
- W2925754753 cites W2770668672 @default.
- W2925754753 cites W2791268212 @default.
- W2925754753 cites W2796089964 @default.
- W2925754753 cites W2801628150 @default.
- W2925754753 cites W2883073965 @default.
- W2925754753 cites W2890998722 @default.
- W2925754753 doi "https://doi.org/10.1016/j.chroma.2019.03.038" @default.
- W2925754753 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31104847" @default.
- W2925754753 hasPublicationYear "2019" @default.
- W2925754753 type Work @default.
- W2925754753 sameAs 2925754753 @default.
- W2925754753 citedByCount "16" @default.
- W2925754753 countsByYear W29257547532020 @default.
- W2925754753 countsByYear W29257547532021 @default.
- W2925754753 countsByYear W29257547532022 @default.
- W2925754753 countsByYear W29257547532023 @default.
- W2925754753 crossrefType "journal-article" @default.
- W2925754753 hasAuthorship W2925754753A5005199763 @default.
- W2925754753 hasAuthorship W2925754753A5027451267 @default.
- W2925754753 hasAuthorship W2925754753A5070362884 @default.
- W2925754753 hasAuthorship W2925754753A5087368205 @default.
- W2925754753 hasAuthorship W2925754753A5089528529 @default.
- W2925754753 hasBestOaLocation W29257547531 @default.
- W2925754753 hasConcept C108625454 @default.
- W2925754753 hasConcept C116817701 @default.
- W2925754753 hasConcept C138268822 @default.
- W2925754753 hasConcept C154945302 @default.
- W2925754753 hasConcept C179998833 @default.
- W2925754753 hasConcept C185592680 @default.
- W2925754753 hasConcept C2777313579 @default.
- W2925754753 hasConcept C2777463227 @default.
- W2925754753 hasConcept C41008148 @default.
- W2925754753 hasConcept C43617362 @default.
- W2925754753 hasConcept C45188465 @default.
- W2925754753 hasConcept C55493867 @default.
- W2925754753 hasConcept C73826308 @default.
- W2925754753 hasConcept C90260826 @default.
- W2925754753 hasConceptScore W2925754753C108625454 @default.
- W2925754753 hasConceptScore W2925754753C116817701 @default.
- W2925754753 hasConceptScore W2925754753C138268822 @default.
- W2925754753 hasConceptScore W2925754753C154945302 @default.
- W2925754753 hasConceptScore W2925754753C179998833 @default.
- W2925754753 hasConceptScore W2925754753C185592680 @default.
- W2925754753 hasConceptScore W2925754753C2777313579 @default.
- W2925754753 hasConceptScore W2925754753C2777463227 @default.
- W2925754753 hasConceptScore W2925754753C41008148 @default.
- W2925754753 hasConceptScore W2925754753C43617362 @default.