Matches in SemOpenAlex for { <https://semopenalex.org/work/W2925759056> ?p ?o ?g. }
- W2925759056 endingPage "4086" @default.
- W2925759056 startingPage "4074" @default.
- W2925759056 abstract "We develop a computationally efficient molecular-based simulation algorithm for chemical reaction equilibria in liquids containing neutral and ionic species, which is based on the combination of classical force field and ab initio calculations and permits calculations involving very small species concentrations. We show its application to the reactive absorption of CO2 in aqueous monoethanolamine (MEA) solvent as a benchmark case, the first time that a quantitatively accurate predictive approach requiring no experimental data has been successfully applied to calculate all solution species concentrations for this system, including the partial pressure of CO2 above the solution. The Reaction Ensemble Monte Carlo (REMC) algorithm, the only other generally applicable approach, requires special system-dependent Monte Carlo enhancements for its implementation, and to detect species with very small concentrations requires long simulation times and/or large system sizes. In contrast, the proposed algorithm can be straightforwardly implemented for systems of any molecular complexity using a standard Molecular Dynamics (MD) simulation package capable of calculating free energy changes and can calculate small species concentrations with normal simulation times and system sizes. In addition, the inherent parallelization capability of MD (which is problematic for MC-based approaches) enables the algorithm’s computationally efficient implementation. The H2O–MEA–CO2 benchmark system has been the subject of many previous studies based on macroscopic thermodynamic modeling, which primarily involves fitting their parameters (of which reaction pK values are the most important) to experimental data measurements. To make contact with such approaches, we show the translation of the molecular-based quantities to the direct prediction of these parameters and calculate reaction equilibrium in the framework of a Henry Law-based chemical potential model. We consider both the ideal solution form and its extension using the Davies equation for the species activity coefficients. We study a range of temperatures and CO2 solution loadings in a 30 wt % MEA solution and incorporate an uncertainty analysis in our methodology. We find that the uncertainties of the simulated solution species compositions are comparable to those of the available experimental data. We report predictions of minor species compositions of very small magnitude, for which experimental measurements are typically extremely challenging." @default.
- W2925759056 created "2019-04-11" @default.
- W2925759056 creator A5002204521 @default.
- W2925759056 creator A5013861330 @default.
- W2925759056 date "2019-04-05" @default.
- W2925759056 modified "2023-10-16" @default.
- W2925759056 title "An Efficient Molecular Simulation Methodology for Chemical Reaction Equilibria in Electrolyte Solutions: Application to CO<sub>2</sub> Reactive Absorption" @default.
- W2925759056 cites W1648814042 @default.
- W2925759056 cites W1769252397 @default.
- W2925759056 cites W1963921171 @default.
- W2925759056 cites W1965869582 @default.
- W2925759056 cites W1971583655 @default.
- W2925759056 cites W1977804730 @default.
- W2925759056 cites W1979867348 @default.
- W2925759056 cites W1979962566 @default.
- W2925759056 cites W1981225934 @default.
- W2925759056 cites W2020628035 @default.
- W2925759056 cites W2024762727 @default.
- W2925759056 cites W2032254169 @default.
- W2925759056 cites W2034281843 @default.
- W2925759056 cites W2035499492 @default.
- W2925759056 cites W2041255513 @default.
- W2925759056 cites W2046340210 @default.
- W2925759056 cites W2048902575 @default.
- W2925759056 cites W2051539707 @default.
- W2925759056 cites W2051981708 @default.
- W2925759056 cites W2064579586 @default.
- W2925759056 cites W2072036518 @default.
- W2925759056 cites W2074642780 @default.
- W2925759056 cites W2075258828 @default.
- W2925759056 cites W2093381148 @default.
- W2925759056 cites W2122333424 @default.
- W2925759056 cites W2140151763 @default.
- W2925759056 cites W2148523763 @default.
- W2925759056 cites W2150143512 @default.
- W2925759056 cites W2156454985 @default.
- W2925759056 cites W2159108423 @default.
- W2925759056 cites W2316893914 @default.
- W2925759056 cites W2321831860 @default.
- W2925759056 cites W2324089314 @default.
- W2925759056 cites W2328740381 @default.
- W2925759056 cites W2331349953 @default.
- W2925759056 cites W2332108074 @default.
- W2925759056 cites W2335291638 @default.
- W2925759056 cites W2469515466 @default.
- W2925759056 cites W2498829061 @default.
- W2925759056 cites W2586762724 @default.
- W2925759056 cites W2607555011 @default.
- W2925759056 cites W2617367274 @default.
- W2925759056 cites W2618002798 @default.
- W2925759056 cites W2738867636 @default.
- W2925759056 cites W2751145421 @default.
- W2925759056 cites W2760157963 @default.
- W2925759056 cites W2783559884 @default.
- W2925759056 cites W2789429535 @default.
- W2925759056 cites W2790718848 @default.
- W2925759056 cites W2791460617 @default.
- W2925759056 cites W2795521631 @default.
- W2925759056 cites W2888099841 @default.
- W2925759056 cites W2888299846 @default.
- W2925759056 cites W2888365954 @default.
- W2925759056 cites W2890564597 @default.
- W2925759056 cites W2903719045 @default.
- W2925759056 cites W3102342349 @default.
- W2925759056 doi "https://doi.org/10.1021/acs.jpca.9b00302" @default.
- W2925759056 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30950623" @default.
- W2925759056 hasPublicationYear "2019" @default.
- W2925759056 type Work @default.
- W2925759056 sameAs 2925759056 @default.
- W2925759056 citedByCount "10" @default.
- W2925759056 countsByYear W29257590562019 @default.
- W2925759056 countsByYear W29257590562020 @default.
- W2925759056 countsByYear W29257590562021 @default.
- W2925759056 countsByYear W29257590562023 @default.
- W2925759056 crossrefType "journal-article" @default.
- W2925759056 hasAuthorship W2925759056A5002204521 @default.
- W2925759056 hasAuthorship W2925759056A5013861330 @default.
- W2925759056 hasConcept C105795698 @default.
- W2925759056 hasConcept C10803110 @default.
- W2925759056 hasConcept C11413529 @default.
- W2925759056 hasConcept C121332964 @default.
- W2925759056 hasConcept C121864883 @default.
- W2925759056 hasConcept C13280743 @default.
- W2925759056 hasConcept C145148216 @default.
- W2925759056 hasConcept C147597530 @default.
- W2925759056 hasConcept C147789679 @default.
- W2925759056 hasConcept C15482360 @default.
- W2925759056 hasConcept C154945302 @default.
- W2925759056 hasConcept C17525397 @default.
- W2925759056 hasConcept C178790620 @default.
- W2925759056 hasConcept C185592680 @default.
- W2925759056 hasConcept C185798385 @default.
- W2925759056 hasConcept C19499675 @default.
- W2925759056 hasConcept C202444582 @default.
- W2925759056 hasConcept C205649164 @default.
- W2925759056 hasConcept C2182769 @default.
- W2925759056 hasConcept C33923547 @default.
- W2925759056 hasConcept C41008148 @default.