Matches in SemOpenAlex for { <https://semopenalex.org/work/W2925920644> ?p ?o ?g. }
- W2925920644 endingPage "587" @default.
- W2925920644 startingPage "575" @default.
- W2925920644 abstract "Student attrition – the departure from an institution of higher learning prior to the achievement of a degree or earning due educational credentials – is an administratively important, scientifically interesting and yet practically challenging problem for decision makers and researchers. This study aims to find the prominent variables and their conditional dependencies/interrelations that affect student attrition in college settings. Specifically, using a large and feature-rich dataset, proposed methodology successfully captures the probabilistic interactions between attrition (the dependent variable) and related factors (the independent variables) to reveal the underlying, potentially complex/non-linear relationships. The proposed methodology successfully predicts the individual students' attrition risk through a Bayesian Belief Network-driven probabilistic model. The findings suggest that the proposed probabilistic graphical/network method is capable of predicting student attrition with 84% in AUC – Area Under the Receiver Operating Characteristics Curve. Using a 2-by-2 investigational design framework, this body of research also compares the impact and contribution of data balancing and feature selection to the resultant prediction models. The results show that (1) the imbalanced dataset produces similar predictive results in detecting the at-risk students, and (2) the feature selection, which is the process of identifying and eliminating unnecessary/unimportant predictors, results in simpler, more understandable, interpretable, and actionable results without compromising on the accuracy of the prediction task." @default.
- W2925920644 created "2019-04-11" @default.
- W2925920644 creator A5049563716 @default.
- W2925920644 creator A5053985398 @default.
- W2925920644 creator A5065326793 @default.
- W2925920644 date "2020-03-01" @default.
- W2925920644 modified "2023-10-17" @default.
- W2925920644 title "Development of a Bayesian Belief Network-based DSS for predicting and understanding freshmen student attrition" @default.
- W2925920644 cites W1494173067 @default.
- W2925920644 cites W1817561967 @default.
- W2925920644 cites W1894873891 @default.
- W2925920644 cites W1909216329 @default.
- W2925920644 cites W1970881937 @default.
- W2925920644 cites W1975871643 @default.
- W2925920644 cites W1984646461 @default.
- W2925920644 cites W1990400475 @default.
- W2925920644 cites W2010312671 @default.
- W2925920644 cites W2015452969 @default.
- W2925920644 cites W2015780725 @default.
- W2925920644 cites W2029800614 @default.
- W2925920644 cites W2035731137 @default.
- W2925920644 cites W2037587734 @default.
- W2925920644 cites W2038365111 @default.
- W2925920644 cites W2045487331 @default.
- W2925920644 cites W2045871438 @default.
- W2925920644 cites W2073299367 @default.
- W2925920644 cites W2085766370 @default.
- W2925920644 cites W2091174839 @default.
- W2925920644 cites W2104961002 @default.
- W2925920644 cites W2108908307 @default.
- W2925920644 cites W2113228480 @default.
- W2925920644 cites W2116705289 @default.
- W2925920644 cites W2122825543 @default.
- W2925920644 cites W2143117649 @default.
- W2925920644 cites W2154830650 @default.
- W2925920644 cites W2163048132 @default.
- W2925920644 cites W2163166770 @default.
- W2925920644 cites W2182336023 @default.
- W2925920644 cites W2190777349 @default.
- W2925920644 cites W2301570893 @default.
- W2925920644 cites W2355311887 @default.
- W2925920644 cites W2505736237 @default.
- W2925920644 cites W2522834812 @default.
- W2925920644 cites W2539054576 @default.
- W2925920644 cites W2603824136 @default.
- W2925920644 cites W2771885314 @default.
- W2925920644 cites W4230254879 @default.
- W2925920644 cites W4240798887 @default.
- W2925920644 cites W4294541781 @default.
- W2925920644 doi "https://doi.org/10.1016/j.ejor.2019.03.037" @default.
- W2925920644 hasPublicationYear "2020" @default.
- W2925920644 type Work @default.
- W2925920644 sameAs 2925920644 @default.
- W2925920644 citedByCount "33" @default.
- W2925920644 countsByYear W29259206442020 @default.
- W2925920644 countsByYear W29259206442021 @default.
- W2925920644 countsByYear W29259206442022 @default.
- W2925920644 countsByYear W29259206442023 @default.
- W2925920644 crossrefType "journal-article" @default.
- W2925920644 hasAuthorship W2925920644A5049563716 @default.
- W2925920644 hasAuthorship W2925920644A5053985398 @default.
- W2925920644 hasAuthorship W2925920644A5065326793 @default.
- W2925920644 hasConcept C105795698 @default.
- W2925920644 hasConcept C111919701 @default.
- W2925920644 hasConcept C119857082 @default.
- W2925920644 hasConcept C124101348 @default.
- W2925920644 hasConcept C134306372 @default.
- W2925920644 hasConcept C138885662 @default.
- W2925920644 hasConcept C148483581 @default.
- W2925920644 hasConcept C154945302 @default.
- W2925920644 hasConcept C155846161 @default.
- W2925920644 hasConcept C162324750 @default.
- W2925920644 hasConcept C182365436 @default.
- W2925920644 hasConcept C187736073 @default.
- W2925920644 hasConcept C199343813 @default.
- W2925920644 hasConcept C2776401178 @default.
- W2925920644 hasConcept C2780451532 @default.
- W2925920644 hasConcept C2780553607 @default.
- W2925920644 hasConcept C33724603 @default.
- W2925920644 hasConcept C33923547 @default.
- W2925920644 hasConcept C41008148 @default.
- W2925920644 hasConcept C41895202 @default.
- W2925920644 hasConcept C44492722 @default.
- W2925920644 hasConcept C49937458 @default.
- W2925920644 hasConcept C71924100 @default.
- W2925920644 hasConcept C79772020 @default.
- W2925920644 hasConcept C81917197 @default.
- W2925920644 hasConcept C98045186 @default.
- W2925920644 hasConceptScore W2925920644C105795698 @default.
- W2925920644 hasConceptScore W2925920644C111919701 @default.
- W2925920644 hasConceptScore W2925920644C119857082 @default.
- W2925920644 hasConceptScore W2925920644C124101348 @default.
- W2925920644 hasConceptScore W2925920644C134306372 @default.
- W2925920644 hasConceptScore W2925920644C138885662 @default.
- W2925920644 hasConceptScore W2925920644C148483581 @default.
- W2925920644 hasConceptScore W2925920644C154945302 @default.
- W2925920644 hasConceptScore W2925920644C155846161 @default.
- W2925920644 hasConceptScore W2925920644C162324750 @default.