Matches in SemOpenAlex for { <https://semopenalex.org/work/W2926234975> ?p ?o ?g. }
- W2926234975 endingPage "157" @default.
- W2926234975 startingPage "147" @default.
- W2926234975 abstract "K-nearest neighbor (kNN) search is an important problem in data mining and knowledge discovery. Inspired by the huge success of tree-based methodology and ensemble methods over the last decades, we propose a new method for kNN search, random projection forests (rpForests). rpForests finds nearest neighbors by combining multiple kNN-sensitive trees with each constructed recursively through a series of random projections. As demonstrated by experiments on a wide collection of real datasets, our method achieves a remarkable accuracy in terms of fast decaying missing rate of kNNs and that of discrepancy in the k-th nearest neighbor distances. rpForests has a very low computational complexity as a tree-based methodology. The ensemble nature of rpForests makes it easily parallelized to run on clustered or multicore computers; the running time is expected to be nearly inversely proportional to the number of cores or machines. We give theoretical insights on rpForests by showing the exponential decay of neighboring points being separated by ensemble random projection trees when the ensemble size increases. Our theory can also be used to refine the choice of random projections in the growth of rpForests; experiments show that the effect is remarkable." @default.
- W2926234975 created "2019-04-11" @default.
- W2926234975 creator A5018244700 @default.
- W2926234975 creator A5020487588 @default.
- W2926234975 creator A5060954578 @default.
- W2926234975 creator A5086868372 @default.
- W2926234975 date "2021-03-01" @default.
- W2926234975 modified "2023-10-09" @default.
- W2926234975 title "K-Nearest Neighbor Search by Random Projection Forests" @default.
- W2926234975 cites W1509388613 @default.
- W2926234975 cites W1513618424 @default.
- W2926234975 cites W1530232915 @default.
- W2926234975 cites W1549123574 @default.
- W2926234975 cites W1985879444 @default.
- W2926234975 cites W1998951954 @default.
- W2926234975 cites W2001619934 @default.
- W2926234975 cites W2024668293 @default.
- W2926234975 cites W2038276547 @default.
- W2926234975 cites W2045263322 @default.
- W2926234975 cites W2050913223 @default.
- W2926234975 cites W2070276049 @default.
- W2926234975 cites W2086504823 @default.
- W2926234975 cites W2105234758 @default.
- W2926234975 cites W2110026675 @default.
- W2926234975 cites W2115854352 @default.
- W2926234975 cites W2116810533 @default.
- W2926234975 cites W2118123209 @default.
- W2926234975 cites W2133296809 @default.
- W2926234975 cites W2134370969 @default.
- W2926234975 cites W2165558283 @default.
- W2926234975 cites W2213673037 @default.
- W2926234975 cites W2341251094 @default.
- W2926234975 cites W2427881153 @default.
- W2926234975 cites W2545201814 @default.
- W2926234975 cites W2911964244 @default.
- W2926234975 cites W2962712507 @default.
- W2926234975 cites W2964216716 @default.
- W2926234975 cites W3037609093 @default.
- W2926234975 cites W3101568187 @default.
- W2926234975 cites W3101570666 @default.
- W2926234975 cites W3105198801 @default.
- W2926234975 cites W4212883601 @default.
- W2926234975 cites W4214596219 @default.
- W2926234975 cites W4253461361 @default.
- W2926234975 doi "https://doi.org/10.1109/tbdata.2019.2908178" @default.
- W2926234975 hasPublicationYear "2021" @default.
- W2926234975 type Work @default.
- W2926234975 sameAs 2926234975 @default.
- W2926234975 citedByCount "20" @default.
- W2926234975 countsByYear W29262349752019 @default.
- W2926234975 countsByYear W29262349752020 @default.
- W2926234975 countsByYear W29262349752021 @default.
- W2926234975 countsByYear W29262349752022 @default.
- W2926234975 countsByYear W29262349752023 @default.
- W2926234975 crossrefType "journal-article" @default.
- W2926234975 hasAuthorship W2926234975A5018244700 @default.
- W2926234975 hasAuthorship W2926234975A5020487588 @default.
- W2926234975 hasAuthorship W2926234975A5060954578 @default.
- W2926234975 hasAuthorship W2926234975A5086868372 @default.
- W2926234975 hasBestOaLocation W29262349752 @default.
- W2926234975 hasConcept C102164700 @default.
- W2926234975 hasConcept C104047586 @default.
- W2926234975 hasConcept C113174947 @default.
- W2926234975 hasConcept C113238511 @default.
- W2926234975 hasConcept C11413529 @default.
- W2926234975 hasConcept C114614502 @default.
- W2926234975 hasConcept C116738811 @default.
- W2926234975 hasConcept C124101348 @default.
- W2926234975 hasConcept C134306372 @default.
- W2926234975 hasConcept C140745168 @default.
- W2926234975 hasConcept C143724316 @default.
- W2926234975 hasConcept C151730666 @default.
- W2926234975 hasConcept C153180895 @default.
- W2926234975 hasConcept C154945302 @default.
- W2926234975 hasConcept C161986146 @default.
- W2926234975 hasConcept C169258074 @default.
- W2926234975 hasConcept C175859090 @default.
- W2926234975 hasConcept C184879717 @default.
- W2926234975 hasConcept C2777036070 @default.
- W2926234975 hasConcept C33721204 @default.
- W2926234975 hasConcept C33923547 @default.
- W2926234975 hasConcept C41008148 @default.
- W2926234975 hasConcept C57493831 @default.
- W2926234975 hasConcept C73555534 @default.
- W2926234975 hasConcept C75235859 @default.
- W2926234975 hasConcept C86803240 @default.
- W2926234975 hasConcept C94641424 @default.
- W2926234975 hasConceptScore W2926234975C102164700 @default.
- W2926234975 hasConceptScore W2926234975C104047586 @default.
- W2926234975 hasConceptScore W2926234975C113174947 @default.
- W2926234975 hasConceptScore W2926234975C113238511 @default.
- W2926234975 hasConceptScore W2926234975C11413529 @default.
- W2926234975 hasConceptScore W2926234975C114614502 @default.
- W2926234975 hasConceptScore W2926234975C116738811 @default.
- W2926234975 hasConceptScore W2926234975C124101348 @default.
- W2926234975 hasConceptScore W2926234975C134306372 @default.
- W2926234975 hasConceptScore W2926234975C140745168 @default.
- W2926234975 hasConceptScore W2926234975C143724316 @default.