Matches in SemOpenAlex for { <https://semopenalex.org/work/W2926304847> ?p ?o ?g. }
- W2926304847 endingPage "698" @default.
- W2926304847 startingPage "689" @default.
- W2926304847 abstract "Background: We propose a classification method for Alzheimer’s disease (AD) based on the texture of the hippocampus, which is the organ that is most affected by the onset of AD. Methods: We obtained magnetic resonance images (MRIs) of Alzheimer’s patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. This dataset consists of image data for AD, mild cognitive impairment (MCI), and normal controls (NCs), classified according to the cognitive condition. In this study, the research methods included image processing, texture analyses, and deep learning. Firstly, images were acquired for texture analyses, which were then re-spaced, registered, and cropped with Gabor filters applied to the resulting image data. In the texture analyses, we applied the 3-dimensional (3D) gray-level co-occurrence (GLCM) method to evaluate the textural features of the image, and used Fisher’s coefficient to select the appropriate features for classification. In the last stage, we implemented a deep learning multi-layer perceptron (MLP) model, which we divided into three types, namely, AD-MCI, AD-NC, and MCI-NC. Results: We used this model to assess the accuracy of the proposed method. The classification accuracy of the proposed deep learning model was confirmed in the cases of AD-MCI (72.5%), ADNC (85%), and MCI-NC (75%). We also evaluated the results obtained using a confusion matrix, support vector machine (SVM), and K-nearest neighbor (KNN) classifier and analyzed the results to objectively verify our model. We obtained the highest accuracy of 85% in the AD-NC. Conclusion: The proposed model was at least 6–19% more accurate than the SVM and KNN classifiers, respectively. Hence, this study confirms the validity and superiority of the proposed method, which can be used as a diagnostic tool for early Alzheimer’s diagnosis." @default.
- W2926304847 created "2019-04-11" @default.
- W2926304847 creator A5006011118 @default.
- W2926304847 creator A5042624267 @default.
- W2926304847 creator A5062411608 @default.
- W2926304847 creator A5075591387 @default.
- W2926304847 creator A5084120845 @default.
- W2926304847 date "2019-08-26" @default.
- W2926304847 modified "2023-10-02" @default.
- W2926304847 title "Deep Learning for Alzheimer’s Disease Classification using Texture Features" @default.
- W2926304847 cites W1969840923 @default.
- W2926304847 cites W1969900098 @default.
- W2926304847 cites W2001619934 @default.
- W2926304847 cites W2004757203 @default.
- W2926304847 cites W2026616100 @default.
- W2926304847 cites W2028276885 @default.
- W2926304847 cites W2036039046 @default.
- W2926304847 cites W2053600437 @default.
- W2926304847 cites W2057536936 @default.
- W2926304847 cites W2067924831 @default.
- W2926304847 cites W2076597562 @default.
- W2926304847 cites W2087795629 @default.
- W2926304847 cites W2089244634 @default.
- W2926304847 cites W2095473347 @default.
- W2926304847 cites W2098805041 @default.
- W2926304847 cites W2102372511 @default.
- W2926304847 cites W2102508963 @default.
- W2926304847 cites W2111933206 @default.
- W2926304847 cites W2117438495 @default.
- W2926304847 cites W2120026449 @default.
- W2926304847 cites W2125148312 @default.
- W2926304847 cites W2129267808 @default.
- W2926304847 cites W2134610285 @default.
- W2926304847 cites W2143162727 @default.
- W2926304847 cites W2147752924 @default.
- W2926304847 cites W2148828979 @default.
- W2926304847 cites W2159122349 @default.
- W2926304847 cites W2165840723 @default.
- W2926304847 cites W2171380313 @default.
- W2926304847 cites W2221487567 @default.
- W2926304847 cites W2581082771 @default.
- W2926304847 cites W2582524520 @default.
- W2926304847 cites W2596340169 @default.
- W2926304847 cites W2775730689 @default.
- W2926304847 cites W2782620387 @default.
- W2926304847 cites W2789452586 @default.
- W2926304847 cites W2792780667 @default.
- W2926304847 cites W2795340517 @default.
- W2926304847 cites W2795824182 @default.
- W2926304847 cites W2896526587 @default.
- W2926304847 cites W2919115771 @default.
- W2926304847 cites W2964263004 @default.
- W2926304847 cites W4211050998 @default.
- W2926304847 doi "https://doi.org/10.2174/1573405615666190404163233" @default.
- W2926304847 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32008517" @default.
- W2926304847 hasPublicationYear "2019" @default.
- W2926304847 type Work @default.
- W2926304847 sameAs 2926304847 @default.
- W2926304847 citedByCount "16" @default.
- W2926304847 countsByYear W29263048472021 @default.
- W2926304847 countsByYear W29263048472022 @default.
- W2926304847 countsByYear W29263048472023 @default.
- W2926304847 crossrefType "journal-article" @default.
- W2926304847 hasAuthorship W2926304847A5006011118 @default.
- W2926304847 hasAuthorship W2926304847A5042624267 @default.
- W2926304847 hasAuthorship W2926304847A5062411608 @default.
- W2926304847 hasAuthorship W2926304847A5075591387 @default.
- W2926304847 hasAuthorship W2926304847A5084120845 @default.
- W2926304847 hasConcept C108583219 @default.
- W2926304847 hasConcept C118552586 @default.
- W2926304847 hasConcept C12267149 @default.
- W2926304847 hasConcept C138602881 @default.
- W2926304847 hasConcept C142724271 @default.
- W2926304847 hasConcept C153180895 @default.
- W2926304847 hasConcept C154945302 @default.
- W2926304847 hasConcept C2779134260 @default.
- W2926304847 hasConcept C2984915365 @default.
- W2926304847 hasConcept C41008148 @default.
- W2926304847 hasConcept C58693492 @default.
- W2926304847 hasConcept C71924100 @default.
- W2926304847 hasConcept C95623464 @default.
- W2926304847 hasConceptScore W2926304847C108583219 @default.
- W2926304847 hasConceptScore W2926304847C118552586 @default.
- W2926304847 hasConceptScore W2926304847C12267149 @default.
- W2926304847 hasConceptScore W2926304847C138602881 @default.
- W2926304847 hasConceptScore W2926304847C142724271 @default.
- W2926304847 hasConceptScore W2926304847C153180895 @default.
- W2926304847 hasConceptScore W2926304847C154945302 @default.
- W2926304847 hasConceptScore W2926304847C2779134260 @default.
- W2926304847 hasConceptScore W2926304847C2984915365 @default.
- W2926304847 hasConceptScore W2926304847C41008148 @default.
- W2926304847 hasConceptScore W2926304847C58693492 @default.
- W2926304847 hasConceptScore W2926304847C71924100 @default.
- W2926304847 hasConceptScore W2926304847C95623464 @default.
- W2926304847 hasFunder F4320322120 @default.
- W2926304847 hasIssue "7" @default.
- W2926304847 hasLocation W29263048471 @default.
- W2926304847 hasLocation W29263048472 @default.