Matches in SemOpenAlex for { <https://semopenalex.org/work/W2926366943> ?p ?o ?g. }
- W2926366943 endingPage "13" @default.
- W2926366943 startingPage "1" @default.
- W2926366943 abstract "Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal models for new users. In some applications, we hope to acquire models for new persons as fast as possible, and reduce the demand for the labeled data amount. To achieve this goal, we propose a multisource transfer learning method, where existing persons are sources, and the new person is the target. The target data are divided into calibration sessions for training and subsequent sessions for test. The first stage of the method is source selection aimed at locating appropriate sources. The second is style transfer mapping, which reduces the EEG differences between the target and each source. We use few labeled data in the calibration sessions to conduct source selection and style transfer. Finally, we integrate the source models to recognize emotions in the subsequent sessions. The experimental results show that the three-category classification accuracy on benchmark SEED improves by 12.72% comparing with the nontransfer method. Our method facilitates the fast deployment of emotion recognition models by reducing the reliance on the labeled data amount, which has practical significance especially in fast-deployment scenarios." @default.
- W2926366943 created "2019-04-11" @default.
- W2926366943 creator A5042799313 @default.
- W2926366943 creator A5056296476 @default.
- W2926366943 creator A5069531609 @default.
- W2926366943 creator A5084940574 @default.
- W2926366943 creator A5089646011 @default.
- W2926366943 date "2019-01-01" @default.
- W2926366943 modified "2023-10-16" @default.
- W2926366943 title "Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition" @default.
- W2926366943 cites W1947251450 @default.
- W2926366943 cites W1970727126 @default.
- W2926366943 cites W1981658663 @default.
- W2926366943 cites W1982696459 @default.
- W2926366943 cites W1991410152 @default.
- W2926366943 cites W2001859769 @default.
- W2926366943 cites W2003823024 @default.
- W2926366943 cites W2008635359 @default.
- W2926366943 cites W2018364998 @default.
- W2926366943 cites W2032254851 @default.
- W2926366943 cites W2040193698 @default.
- W2926366943 cites W2047545657 @default.
- W2926366943 cites W2051218759 @default.
- W2926366943 cites W2051227896 @default.
- W2926366943 cites W2062179223 @default.
- W2926366943 cites W2066583250 @default.
- W2926366943 cites W2075728230 @default.
- W2926366943 cites W2093440960 @default.
- W2926366943 cites W2093792557 @default.
- W2926366943 cites W2094789510 @default.
- W2926366943 cites W2115403315 @default.
- W2926366943 cites W2120175440 @default.
- W2926366943 cites W2132450666 @default.
- W2926366943 cites W2132889650 @default.
- W2926366943 cites W2136137122 @default.
- W2926366943 cites W2138798794 @default.
- W2926366943 cites W2142280324 @default.
- W2926366943 cites W2165698076 @default.
- W2926366943 cites W2167122806 @default.
- W2926366943 cites W2167716931 @default.
- W2926366943 cites W2396728763 @default.
- W2926366943 cites W2625929003 @default.
- W2926366943 cites W2794345050 @default.
- W2926366943 cites W2962905870 @default.
- W2926366943 cites W3124617164 @default.
- W2926366943 cites W4255421341 @default.
- W2926366943 doi "https://doi.org/10.1109/tcyb.2019.2904052" @default.
- W2926366943 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30932860" @default.
- W2926366943 hasPublicationYear "2019" @default.
- W2926366943 type Work @default.
- W2926366943 sameAs 2926366943 @default.
- W2926366943 citedByCount "140" @default.
- W2926366943 countsByYear W29263669432019 @default.
- W2926366943 countsByYear W29263669432020 @default.
- W2926366943 countsByYear W29263669432021 @default.
- W2926366943 countsByYear W29263669432022 @default.
- W2926366943 countsByYear W29263669432023 @default.
- W2926366943 crossrefType "journal-article" @default.
- W2926366943 hasAuthorship W2926366943A5042799313 @default.
- W2926366943 hasAuthorship W2926366943A5056296476 @default.
- W2926366943 hasAuthorship W2926366943A5069531609 @default.
- W2926366943 hasAuthorship W2926366943A5084940574 @default.
- W2926366943 hasAuthorship W2926366943A5089646011 @default.
- W2926366943 hasConcept C105339364 @default.
- W2926366943 hasConcept C105795698 @default.
- W2926366943 hasConcept C111919701 @default.
- W2926366943 hasConcept C118552586 @default.
- W2926366943 hasConcept C119857082 @default.
- W2926366943 hasConcept C121332964 @default.
- W2926366943 hasConcept C13280743 @default.
- W2926366943 hasConcept C150899416 @default.
- W2926366943 hasConcept C154945302 @default.
- W2926366943 hasConcept C15744967 @default.
- W2926366943 hasConcept C163258240 @default.
- W2926366943 hasConcept C165838908 @default.
- W2926366943 hasConcept C185798385 @default.
- W2926366943 hasConcept C205649164 @default.
- W2926366943 hasConcept C28490314 @default.
- W2926366943 hasConcept C33923547 @default.
- W2926366943 hasConcept C41008148 @default.
- W2926366943 hasConcept C43214815 @default.
- W2926366943 hasConcept C522805319 @default.
- W2926366943 hasConcept C62520636 @default.
- W2926366943 hasConcept C81917197 @default.
- W2926366943 hasConceptScore W2926366943C105339364 @default.
- W2926366943 hasConceptScore W2926366943C105795698 @default.
- W2926366943 hasConceptScore W2926366943C111919701 @default.
- W2926366943 hasConceptScore W2926366943C118552586 @default.
- W2926366943 hasConceptScore W2926366943C119857082 @default.
- W2926366943 hasConceptScore W2926366943C121332964 @default.
- W2926366943 hasConceptScore W2926366943C13280743 @default.
- W2926366943 hasConceptScore W2926366943C150899416 @default.
- W2926366943 hasConceptScore W2926366943C154945302 @default.
- W2926366943 hasConceptScore W2926366943C15744967 @default.
- W2926366943 hasConceptScore W2926366943C163258240 @default.
- W2926366943 hasConceptScore W2926366943C165838908 @default.
- W2926366943 hasConceptScore W2926366943C185798385 @default.
- W2926366943 hasConceptScore W2926366943C205649164 @default.