Matches in SemOpenAlex for { <https://semopenalex.org/work/W2926631942> ?p ?o ?g. }
- W2926631942 abstract "Abstract Increased access to computational resources has allowed reservoir engineers to include assisted history matching (AHM) and uncertainty quantification (UQ) techniques as standard steps of reservoir management workflows. Several advanced methods have become available and are being used in routine activities without a proper understanding of their performance and quality. This paper provides recommendations on the efficiency and quality of different methods for applications to production forecasting, supporting the reservoir-management decision-making process. Results from five advanced methods and two traditional methods were benchmarked in the study. The advanced methods include a nested sampling method MultiNest, the integrated global search Distributed Gauss-Newton (DGN) optimizer with Randomized Maximum Likelihood (RML), the integrated local search DGN optimizer with a Gaussian Mixture Model (GMM), and two advanced Bayesian inference-based methods from commercial simulation packages. Two traditional methods were also included for some test problems: the Markov-Chain Monte Carlo method (MCMC) is known to produce accurate results although it is too expensive for most practical problems, and a DoE-proxy based method widely used and available in some form in most commercial simulation packages. The methods were tested on three different cases of increasing complexity: a 1D simple model based on an analytical function with one uncertain parameter, a simple injector-producer well pair in the SPE01 model with eight uncertain parameters, and an unconventional reservoir model with one well and 24 uncertain parameters. A collection of benchmark metrics was considered to compare the results, but the most useful included the total number of simulation runs, sample size, objective function distributions, cumulative oil production forecast distributions, and marginal posterior parameter distributions. MultiNest and MCMC were found to produce the most accurate results, but MCMC is too costly for practical problems. MultiNest is also costly, but it is much more efficient than MCMC and it may be affordable for some practical applications. The proxy-based method is the lowest-cost solution. However, its accuracy is unacceptably poor. DGN-RML and DGN-GMM seem to have the best compromise between accuracy and efficiency, and the best of these two is DGN-GMM. These two methods may produce some poor-quality samples that should be rejected for the final uncertainty quantification. The results from the benchmark study are somewhat surprising and provide awareness to the reservoir engineering community on the quality and efficiency of the advanced and most traditional methods used for AHM and UQ. Our recommendation is to use DGN-GMM instead of the traditional proxy-based methods for most practical problems, and to consider using the more expensive MultiNest when the cost of running the reservoir models is moderate and high-quality solutions are desired." @default.
- W2926631942 created "2019-04-11" @default.
- W2926631942 creator A5000888071 @default.
- W2926631942 creator A5012441761 @default.
- W2926631942 creator A5014487922 @default.
- W2926631942 creator A5026484158 @default.
- W2926631942 creator A5033355980 @default.
- W2926631942 creator A5048512059 @default.
- W2926631942 creator A5059254277 @default.
- W2926631942 creator A5074575834 @default.
- W2926631942 creator A5087210530 @default.
- W2926631942 date "2019-03-29" @default.
- W2926631942 modified "2023-10-18" @default.
- W2926631942 title "Benchmarking of Advanced Methods for Assisted History Matching and Uncertainty Quantification" @default.
- W2926631942 cites W1512208174 @default.
- W2926631942 cites W1967228716 @default.
- W2926631942 cites W2001934697 @default.
- W2926631942 cites W2004124997 @default.
- W2926631942 cites W2019797282 @default.
- W2926631942 cites W2025641854 @default.
- W2926631942 cites W2031048857 @default.
- W2926631942 cites W2040658407 @default.
- W2926631942 cites W2056760934 @default.
- W2926631942 cites W2063072416 @default.
- W2926631942 cites W2078327207 @default.
- W2926631942 cites W2152091261 @default.
- W2926631942 cites W2153208487 @default.
- W2926631942 cites W2158746430 @default.
- W2926631942 cites W2509534097 @default.
- W2926631942 cites W2587472687 @default.
- W2926631942 cites W2767706848 @default.
- W2926631942 cites W2897558851 @default.
- W2926631942 cites W3104188978 @default.
- W2926631942 doi "https://doi.org/10.2118/193910-ms" @default.
- W2926631942 hasPublicationYear "2019" @default.
- W2926631942 type Work @default.
- W2926631942 sameAs 2926631942 @default.
- W2926631942 citedByCount "2" @default.
- W2926631942 countsByYear W29266319422019 @default.
- W2926631942 countsByYear W29266319422021 @default.
- W2926631942 crossrefType "proceedings-article" @default.
- W2926631942 hasAuthorship W2926631942A5000888071 @default.
- W2926631942 hasAuthorship W2926631942A5012441761 @default.
- W2926631942 hasAuthorship W2926631942A5014487922 @default.
- W2926631942 hasAuthorship W2926631942A5026484158 @default.
- W2926631942 hasAuthorship W2926631942A5033355980 @default.
- W2926631942 hasAuthorship W2926631942A5048512059 @default.
- W2926631942 hasAuthorship W2926631942A5059254277 @default.
- W2926631942 hasAuthorship W2926631942A5074575834 @default.
- W2926631942 hasAuthorship W2926631942A5087210530 @default.
- W2926631942 hasConcept C106131492 @default.
- W2926631942 hasConcept C107673813 @default.
- W2926631942 hasConcept C111350023 @default.
- W2926631942 hasConcept C119857082 @default.
- W2926631942 hasConcept C121332964 @default.
- W2926631942 hasConcept C124101348 @default.
- W2926631942 hasConcept C126255220 @default.
- W2926631942 hasConcept C13280743 @default.
- W2926631942 hasConcept C140779682 @default.
- W2926631942 hasConcept C144133560 @default.
- W2926631942 hasConcept C154945302 @default.
- W2926631942 hasConcept C162853370 @default.
- W2926631942 hasConcept C163716315 @default.
- W2926631942 hasConcept C177212765 @default.
- W2926631942 hasConcept C185798385 @default.
- W2926631942 hasConcept C205649164 @default.
- W2926631942 hasConcept C31972630 @default.
- W2926631942 hasConcept C32230216 @default.
- W2926631942 hasConcept C33923547 @default.
- W2926631942 hasConcept C41008148 @default.
- W2926631942 hasConcept C61326573 @default.
- W2926631942 hasConcept C62520636 @default.
- W2926631942 hasConcept C77088390 @default.
- W2926631942 hasConcept C86251818 @default.
- W2926631942 hasConceptScore W2926631942C106131492 @default.
- W2926631942 hasConceptScore W2926631942C107673813 @default.
- W2926631942 hasConceptScore W2926631942C111350023 @default.
- W2926631942 hasConceptScore W2926631942C119857082 @default.
- W2926631942 hasConceptScore W2926631942C121332964 @default.
- W2926631942 hasConceptScore W2926631942C124101348 @default.
- W2926631942 hasConceptScore W2926631942C126255220 @default.
- W2926631942 hasConceptScore W2926631942C13280743 @default.
- W2926631942 hasConceptScore W2926631942C140779682 @default.
- W2926631942 hasConceptScore W2926631942C144133560 @default.
- W2926631942 hasConceptScore W2926631942C154945302 @default.
- W2926631942 hasConceptScore W2926631942C162853370 @default.
- W2926631942 hasConceptScore W2926631942C163716315 @default.
- W2926631942 hasConceptScore W2926631942C177212765 @default.
- W2926631942 hasConceptScore W2926631942C185798385 @default.
- W2926631942 hasConceptScore W2926631942C205649164 @default.
- W2926631942 hasConceptScore W2926631942C31972630 @default.
- W2926631942 hasConceptScore W2926631942C32230216 @default.
- W2926631942 hasConceptScore W2926631942C33923547 @default.
- W2926631942 hasConceptScore W2926631942C41008148 @default.
- W2926631942 hasConceptScore W2926631942C61326573 @default.
- W2926631942 hasConceptScore W2926631942C62520636 @default.
- W2926631942 hasConceptScore W2926631942C77088390 @default.
- W2926631942 hasConceptScore W2926631942C86251818 @default.
- W2926631942 hasLocation W29266319421 @default.
- W2926631942 hasOpenAccess W2926631942 @default.