Matches in SemOpenAlex for { <https://semopenalex.org/work/W2926691444> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2926691444 endingPage "57" @default.
- W2926691444 startingPage "46" @default.
- W2926691444 abstract "Abstract The rapid development of the construction industry in China has introduced unprecedented quality-related problems in the country’s building industry. In response to this issue, the government has established various complaint channels to report quality problems. Therefore, building quality complaints (BQCs) need to be classified and solved by respective agencies or departments rapidly for avoiding adverse impact on the safety, health, and well-being of people. However, the current process of classifying BQCs is labor intensive, time consuming, and error prone. An automatic complaint classification is required to improve the effectiveness and efficiency of complaint handling, but studies on this issue are limited. Prevailing text classification research in construction has focused on utilizing conventional shallow machine learning. By contrast, this study explores a novel convolutional neural network (CNN)-based approach that incorporates a deep-learning method to automatically classify the short texts contained within BQCs. The presented approach enables capturing the semantic features in BQC texts and automatic classification of the BQCs into predefined categories. After the model optimization, tests are conducted to examine the practical application of the text classification approach compared with Bayes-based and support vector machine classifiers. Results indicate that the developed CNN-based approach performs well in the Chinese BQC classification with limited manual intervention and few complicated feature engineering." @default.
- W2926691444 created "2019-04-11" @default.
- W2926691444 creator A5030981251 @default.
- W2926691444 creator A5034484761 @default.
- W2926691444 creator A5045427161 @default.
- W2926691444 creator A5056101043 @default.
- W2926691444 creator A5084444839 @default.
- W2926691444 date "2019-04-01" @default.
- W2926691444 modified "2023-10-16" @default.
- W2926691444 title "Convolutional neural network: Deep learning-based classification of building quality problems" @default.
- W2926691444 cites W1545929822 @default.
- W2926691444 cites W1832693441 @default.
- W2926691444 cites W1901616594 @default.
- W2926691444 cites W1918694413 @default.
- W2926691444 cites W1960685374 @default.
- W2926691444 cites W1966443646 @default.
- W2926691444 cites W2017820014 @default.
- W2926691444 cites W2054644187 @default.
- W2926691444 cites W2075359029 @default.
- W2926691444 cites W2076383389 @default.
- W2926691444 cites W2100495367 @default.
- W2926691444 cites W2104754852 @default.
- W2926691444 cites W2106079515 @default.
- W2926691444 cites W2118020653 @default.
- W2926691444 cites W2120615054 @default.
- W2926691444 cites W2153653693 @default.
- W2926691444 cites W2161336914 @default.
- W2926691444 cites W2163922914 @default.
- W2926691444 cites W2186845332 @default.
- W2926691444 cites W2207774637 @default.
- W2926691444 cites W2251143283 @default.
- W2926691444 cites W2288791482 @default.
- W2926691444 cites W2567230867 @default.
- W2926691444 cites W2753048242 @default.
- W2926691444 cites W2768148056 @default.
- W2926691444 cites W2790722345 @default.
- W2926691444 cites W2803862859 @default.
- W2926691444 cites W55380224 @default.
- W2926691444 doi "https://doi.org/10.1016/j.aei.2019.02.009" @default.
- W2926691444 hasPublicationYear "2019" @default.
- W2926691444 type Work @default.
- W2926691444 sameAs 2926691444 @default.
- W2926691444 citedByCount "75" @default.
- W2926691444 countsByYear W29266914442019 @default.
- W2926691444 countsByYear W29266914442020 @default.
- W2926691444 countsByYear W29266914442021 @default.
- W2926691444 countsByYear W29266914442022 @default.
- W2926691444 countsByYear W29266914442023 @default.
- W2926691444 crossrefType "journal-article" @default.
- W2926691444 hasAuthorship W2926691444A5030981251 @default.
- W2926691444 hasAuthorship W2926691444A5034484761 @default.
- W2926691444 hasAuthorship W2926691444A5045427161 @default.
- W2926691444 hasAuthorship W2926691444A5056101043 @default.
- W2926691444 hasAuthorship W2926691444A5084444839 @default.
- W2926691444 hasConcept C108583219 @default.
- W2926691444 hasConcept C111472728 @default.
- W2926691444 hasConcept C119857082 @default.
- W2926691444 hasConcept C138885662 @default.
- W2926691444 hasConcept C154945302 @default.
- W2926691444 hasConcept C2779530757 @default.
- W2926691444 hasConcept C41008148 @default.
- W2926691444 hasConcept C50644808 @default.
- W2926691444 hasConcept C81363708 @default.
- W2926691444 hasConceptScore W2926691444C108583219 @default.
- W2926691444 hasConceptScore W2926691444C111472728 @default.
- W2926691444 hasConceptScore W2926691444C119857082 @default.
- W2926691444 hasConceptScore W2926691444C138885662 @default.
- W2926691444 hasConceptScore W2926691444C154945302 @default.
- W2926691444 hasConceptScore W2926691444C2779530757 @default.
- W2926691444 hasConceptScore W2926691444C41008148 @default.
- W2926691444 hasConceptScore W2926691444C50644808 @default.
- W2926691444 hasConceptScore W2926691444C81363708 @default.
- W2926691444 hasFunder F4320321001 @default.
- W2926691444 hasLocation W29266914441 @default.
- W2926691444 hasOpenAccess W2926691444 @default.
- W2926691444 hasPrimaryLocation W29266914441 @default.
- W2926691444 hasRelatedWork W2337926734 @default.
- W2926691444 hasRelatedWork W2731899572 @default.
- W2926691444 hasRelatedWork W2799614062 @default.
- W2926691444 hasRelatedWork W3021430260 @default.
- W2926691444 hasRelatedWork W3133861977 @default.
- W2926691444 hasRelatedWork W3136076031 @default.
- W2926691444 hasRelatedWork W3173182854 @default.
- W2926691444 hasRelatedWork W4200173597 @default.
- W2926691444 hasRelatedWork W4308353688 @default.
- W2926691444 hasRelatedWork W4311257506 @default.
- W2926691444 hasVolume "40" @default.
- W2926691444 isParatext "false" @default.
- W2926691444 isRetracted "false" @default.
- W2926691444 magId "2926691444" @default.
- W2926691444 workType "article" @default.