Matches in SemOpenAlex for { <https://semopenalex.org/work/W2926822460> ?p ?o ?g. }
- W2926822460 abstract "Clinical prediction models offer the ability to help physicians make better data-driven decisions that can improve patient outcomes. Given the wealth of data available with the widespread adoption of electronic health records, more flexible statistical models are required that can account for the messiness and complexity of this data. In this dissertation we focus on developing models for clinical time series, as most data within healthcare is collected longitudinally and it is important to take this structure into account. Models built off of Gaussian processes are natural in this setting of irregularly sampled, noisy time series with many missing values. In addition, they have the added benefit of accounting for and quantifying uncertainty, which can be extremely useful in medical decision making. In this dissertation, we develop new Gaussian process-based models for medical time series along with associated algorithms for efficient inference on large-scale electronic health records data. We apply these models to several real healthcare applications, using local data obtained from the Duke University healthcare system. In Chapter 1 we give a brief overview of clinical prediction models, electronic health records, and Gaussian processes. In Chapter 2, we develop several Gaussian process models for clinical time series in the context of chronic kidney disease management. We show how our proposed joint model for longitudinal and time-to-event data and model for multivariate time series can make accurate predictions about a patient's future disease trajectory. In Chapter 3, we combine multi-output Gaussian processes with a downstream black-box deep recurrent neural network model from deep learning. We apply this modeling framework to clinical time series to improve early detection of sepsis among patients in the hospital, and show that the Gaussian process preprocessing layer both allows for uncertainty quantification and acts as a form of data augmentation to reduce overfitting. In Chapter 4, we again use multi-output Gaussian processes as a preprocessing layer in model-free deep reinforcement learning. Here the goal is to learn optimal treatments for sepsis given clinical time series and historical treatment decisions taken by clinicians, and we show that the Gaussian process preprocessing layer and use of a recurrent architecture offers improvements over standard deep reinforcement learning methods. We conclude in Chapter 5 with a summary of future areas for work, and a discussion on practical considerations and challenges involved in deploying machine learning models into actual clinical practice." @default.
- W2926822460 created "2019-04-11" @default.
- W2926822460 creator A5079293522 @default.
- W2926822460 date "2018-01-01" @default.
- W2926822460 modified "2023-09-23" @default.
- W2926822460 title "Gaussian Process-Based Models for Clinical Time Series in Healthcare" @default.
- W2926822460 cites W137285897 @default.
- W2926822460 cites W1503398984 @default.
- W2926822460 cites W1510444525 @default.
- W2926822460 cites W1515851193 @default.
- W2926822460 cites W1516111018 @default.
- W2926822460 cites W1533660737 @default.
- W2926822460 cites W1571870753 @default.
- W2926822460 cites W1598796236 @default.
- W2926822460 cites W1663973292 @default.
- W2926822460 cites W1827931243 @default.
- W2926822460 cites W1832181941 @default.
- W2926822460 cites W1898928487 @default.
- W2926822460 cites W1909320841 @default.
- W2926822460 cites W1943063538 @default.
- W2926822460 cites W1959608418 @default.
- W2926822460 cites W1965165969 @default.
- W2926822460 cites W1972972829 @default.
- W2926822460 cites W1978108654 @default.
- W2926822460 cites W1983957710 @default.
- W2926822460 cites W1984244683 @default.
- W2926822460 cites W1988068488 @default.
- W2926822460 cites W1990540788 @default.
- W2926822460 cites W1993397663 @default.
- W2926822460 cites W1994616650 @default.
- W2926822460 cites W2010710496 @default.
- W2926822460 cites W2012301002 @default.
- W2926822460 cites W2014224402 @default.
- W2926822460 cites W2027540165 @default.
- W2926822460 cites W2032758468 @default.
- W2926822460 cites W2033609349 @default.
- W2926822460 cites W203426424 @default.
- W2926822460 cites W2043092953 @default.
- W2926822460 cites W2045656233 @default.
- W2926822460 cites W2059266484 @default.
- W2926822460 cites W2059980448 @default.
- W2926822460 cites W2062786076 @default.
- W2926822460 cites W2064675550 @default.
- W2926822460 cites W2065974896 @default.
- W2926822460 cites W2084813411 @default.
- W2926822460 cites W2095654324 @default.
- W2926822460 cites W2098084154 @default.
- W2926822460 cites W2101134120 @default.
- W2926822460 cites W2102361557 @default.
- W2926822460 cites W2104415072 @default.
- W2926822460 cites W2106952837 @default.
- W2926822460 cites W2108882014 @default.
- W2926822460 cites W2109728419 @default.
- W2926822460 cites W2115441252 @default.
- W2926822460 cites W2119033610 @default.
- W2926822460 cites W2122668867 @default.
- W2926822460 cites W2123067625 @default.
- W2926822460 cites W2130075376 @default.
- W2926822460 cites W2132927459 @default.
- W2926822460 cites W2135195117 @default.
- W2926822460 cites W2136073265 @default.
- W2926822460 cites W2137080502 @default.
- W2926822460 cites W2141173017 @default.
- W2926822460 cites W2142231332 @default.
- W2926822460 cites W2144148628 @default.
- W2926822460 cites W2145339207 @default.
- W2926822460 cites W2146502635 @default.
- W2926822460 cites W2146611938 @default.
- W2926822460 cites W2150979970 @default.
- W2926822460 cites W2155965977 @default.
- W2926822460 cites W2155968351 @default.
- W2926822460 cites W2160691650 @default.
- W2926822460 cites W2162596909 @default.
- W2926822460 cites W2165291667 @default.
- W2926822460 cites W2165698076 @default.
- W2926822460 cites W2165721969 @default.
- W2926822460 cites W2165817472 @default.
- W2926822460 cites W2165884492 @default.
- W2926822460 cites W2166851633 @default.
- W2926822460 cites W2169410692 @default.
- W2926822460 cites W2170612786 @default.
- W2926822460 cites W2173564293 @default.
- W2926822460 cites W2185068657 @default.
- W2926822460 cites W2187187251 @default.
- W2926822460 cites W2218759667 @default.
- W2926822460 cites W2244749007 @default.
- W2926822460 cites W2254050631 @default.
- W2926822460 cites W2282181907 @default.
- W2926822460 cites W2282821441 @default.
- W2926822460 cites W2282887873 @default.
- W2926822460 cites W2297716127 @default.
- W2926822460 cites W2372800617 @default.
- W2926822460 cites W2395172628 @default.
- W2926822460 cites W2396881363 @default.
- W2926822460 cites W2406493898 @default.
- W2926822460 cites W2462530867 @default.
- W2926822460 cites W2518582440 @default.
- W2926822460 cites W2522105146 @default.
- W2926822460 cites W2523834880 @default.
- W2926822460 cites W2525984666 @default.