Matches in SemOpenAlex for { <https://semopenalex.org/work/W2926840246> ?p ?o ?g. }
- W2926840246 endingPage "4737" @default.
- W2926840246 startingPage "4727" @default.
- W2926840246 abstract "The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses ex vivo and a decrease in their firing rate in vivo, suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms.SIGNIFICANCE STATEMENT Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation." @default.
- W2926840246 created "2019-04-11" @default.
- W2926840246 creator A5005373431 @default.
- W2926840246 creator A5011106134 @default.
- W2926840246 creator A5030544727 @default.
- W2926840246 creator A5063987237 @default.
- W2926840246 date "2019-04-05" @default.
- W2926840246 modified "2023-10-12" @default.
- W2926840246 title "Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons" @default.
- W2926840246 cites W1511312105 @default.
- W2926840246 cites W1614017769 @default.
- W2926840246 cites W1791529270 @default.
- W2926840246 cites W1910271824 @default.
- W2926840246 cites W1969591714 @default.
- W2926840246 cites W1975441717 @default.
- W2926840246 cites W1982827121 @default.
- W2926840246 cites W1997953085 @default.
- W2926840246 cites W2003412240 @default.
- W2926840246 cites W2009759904 @default.
- W2926840246 cites W2010860074 @default.
- W2926840246 cites W2021454300 @default.
- W2926840246 cites W2022470580 @default.
- W2926840246 cites W2035069294 @default.
- W2926840246 cites W2048255799 @default.
- W2926840246 cites W2048779384 @default.
- W2926840246 cites W2054529848 @default.
- W2926840246 cites W2060584026 @default.
- W2926840246 cites W2060588252 @default.
- W2926840246 cites W2063370969 @default.
- W2926840246 cites W2063375501 @default.
- W2926840246 cites W2074651284 @default.
- W2926840246 cites W2075385578 @default.
- W2926840246 cites W2083977571 @default.
- W2926840246 cites W2087904105 @default.
- W2926840246 cites W2096240481 @default.
- W2926840246 cites W2099525751 @default.
- W2926840246 cites W2102248966 @default.
- W2926840246 cites W2103775384 @default.
- W2926840246 cites W2118021908 @default.
- W2926840246 cites W2124909604 @default.
- W2926840246 cites W2125018051 @default.
- W2926840246 cites W2128290890 @default.
- W2926840246 cites W2130226994 @default.
- W2926840246 cites W2131898297 @default.
- W2926840246 cites W2133177004 @default.
- W2926840246 cites W2172085609 @default.
- W2926840246 cites W2259589351 @default.
- W2926840246 cites W2262104398 @default.
- W2926840246 cites W2274549869 @default.
- W2926840246 cites W2483680559 @default.
- W2926840246 cites W2507372829 @default.
- W2926840246 cites W2528993515 @default.
- W2926840246 cites W2604970372 @default.
- W2926840246 cites W2625354852 @default.
- W2926840246 cites W2762194337 @default.
- W2926840246 cites W2782777427 @default.
- W2926840246 cites W2785407704 @default.
- W2926840246 cites W2786017571 @default.
- W2926840246 cites W2790261399 @default.
- W2926840246 cites W2794023842 @default.
- W2926840246 cites W2802306090 @default.
- W2926840246 cites W2803904186 @default.
- W2926840246 cites W2899704640 @default.
- W2926840246 cites W584280763 @default.
- W2926840246 doi "https://doi.org/10.1523/jneurosci.2913-18.2019" @default.
- W2926840246 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6561696" @default.
- W2926840246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30952811" @default.
- W2926840246 hasPublicationYear "2019" @default.
- W2926840246 type Work @default.
- W2926840246 sameAs 2926840246 @default.
- W2926840246 citedByCount "37" @default.
- W2926840246 countsByYear W29268402462019 @default.
- W2926840246 countsByYear W29268402462020 @default.
- W2926840246 countsByYear W29268402462021 @default.
- W2926840246 countsByYear W29268402462022 @default.
- W2926840246 countsByYear W29268402462023 @default.
- W2926840246 crossrefType "journal-article" @default.
- W2926840246 hasAuthorship W2926840246A5005373431 @default.
- W2926840246 hasAuthorship W2926840246A5011106134 @default.
- W2926840246 hasAuthorship W2926840246A5030544727 @default.
- W2926840246 hasAuthorship W2926840246A5063987237 @default.
- W2926840246 hasBestOaLocation W29268402461 @default.
- W2926840246 hasConcept C112592302 @default.
- W2926840246 hasConcept C142724271 @default.
- W2926840246 hasConcept C169760540 @default.
- W2926840246 hasConcept C170493617 @default.
- W2926840246 hasConcept C17077164 @default.
- W2926840246 hasConcept C22885893 @default.
- W2926840246 hasConcept C2778187257 @default.
- W2926840246 hasConcept C2778542668 @default.
- W2926840246 hasConcept C2779134260 @default.
- W2926840246 hasConcept C2779177108 @default.
- W2926840246 hasConcept C2779296341 @default.
- W2926840246 hasConcept C2779734285 @default.
- W2926840246 hasConcept C2780062018 @default.
- W2926840246 hasConcept C2780648746 @default.
- W2926840246 hasConcept C2781153452 @default.
- W2926840246 hasConcept C50738837 @default.