Matches in SemOpenAlex for { <https://semopenalex.org/work/W2927083635> ?p ?o ?g. }
- W2927083635 endingPage "e0214525" @default.
- W2927083635 startingPage "e0214525" @default.
- W2927083635 abstract "Objectives We propose a bottom-up, machine-learning approach, for the objective vestibular and balance diagnostic data of concussion patients, to provide insight into the differences in patients’ phenotypes, independent of existing diagnoses (unsupervised learning). Methods Diagnostic data from a battery of validated balance and vestibular assessments were extracted from the database of the Swiss Concussion Center. The desired number of clusters within the patient database was estimated using Calinski-Harabasz criteria. Complex (self-organizing map, SOM) and standard (k-means) clustering tools were used, and the formed clusters were compared. Results A total of 96 patients (81.3% male, age (median [IQR]): 25.0[10.8]) who were expected to suffer from sports-related concussion or post-concussive syndrome (52[140] days between diagnostic testing and the concussive episode) were included. The cluster evaluation indicated dividing the data into two groups. Only the SOM gave a stable clustering outcome, dividing the patients in group-1 (n = 38) and group-2 (n = 58). A large significant difference was found for the caloric summary score for the maximal speed of the slow phase, where group-1 scored 30.7% lower than group-2 (27.6[18.2] vs. 51.0[31.0]). Group-1 also scored significantly lower on the sensory organisation test composite score (69.0[22.3] vs. 79.0[10.5]) and higher on the visual acuity (-0.03[0.33] vs. -0.14[0.12]) and dynamic visual acuity (0.38[0.84] vs. 0.20[0.20]) tests. The importance of caloric, SOT and DVA, was supported by the PCA outcomes. Group-1 tended to report headaches, blurred vision and balance problems more frequently than group-2 (>10% difference). Conclusion The SOM divided the data into one group with prominent vestibular disorders and another with no clear vestibular or balance problems, suggesting that artificial intelligence might help improve the diagnostic process." @default.
- W2927083635 created "2019-04-11" @default.
- W2927083635 creator A5039023703 @default.
- W2927083635 creator A5044940875 @default.
- W2927083635 creator A5058426311 @default.
- W2927083635 creator A5075321491 @default.
- W2927083635 creator A5082297475 @default.
- W2927083635 date "2019-04-02" @default.
- W2927083635 modified "2023-10-07" @default.
- W2927083635 title "Artificial intelligence for understanding concussion: Retrospective cluster analysis on the balance and vestibular diagnostic data of concussion patients" @default.
- W2927083635 cites W151922660 @default.
- W2927083635 cites W1712916991 @default.
- W2927083635 cites W1976771381 @default.
- W2927083635 cites W1978801647 @default.
- W2927083635 cites W1987971958 @default.
- W2927083635 cites W1997303375 @default.
- W2927083635 cites W1998660932 @default.
- W2927083635 cites W2002930634 @default.
- W2927083635 cites W2009613435 @default.
- W2927083635 cites W2034955059 @default.
- W2927083635 cites W2039193727 @default.
- W2927083635 cites W2051224630 @default.
- W2927083635 cites W2059559596 @default.
- W2927083635 cites W2071949631 @default.
- W2927083635 cites W2072912227 @default.
- W2927083635 cites W2076646346 @default.
- W2927083635 cites W2079810998 @default.
- W2927083635 cites W2083780116 @default.
- W2927083635 cites W2085817020 @default.
- W2927083635 cites W2089468765 @default.
- W2927083635 cites W2110802877 @default.
- W2927083635 cites W2128728535 @default.
- W2927083635 cites W2142169375 @default.
- W2927083635 cites W2142376070 @default.
- W2927083635 cites W2148540129 @default.
- W2927083635 cites W2158485497 @default.
- W2927083635 cites W2160855699 @default.
- W2927083635 cites W2179091178 @default.
- W2927083635 cites W2299720395 @default.
- W2927083635 cites W2404787547 @default.
- W2927083635 cites W2517910510 @default.
- W2927083635 cites W2518054927 @default.
- W2927083635 cites W2530688129 @default.
- W2927083635 cites W2534210052 @default.
- W2927083635 cites W2559696084 @default.
- W2927083635 cites W2593488921 @default.
- W2927083635 cites W2594552501 @default.
- W2927083635 cites W2604650343 @default.
- W2927083635 cites W2610287704 @default.
- W2927083635 cites W2618310148 @default.
- W2927083635 cites W2619526076 @default.
- W2927083635 cites W2626287694 @default.
- W2927083635 cites W2735598979 @default.
- W2927083635 cites W2769527998 @default.
- W2927083635 cites W2770452554 @default.
- W2927083635 cites W2770514281 @default.
- W2927083635 cites W2773173039 @default.
- W2927083635 cites W2799632348 @default.
- W2927083635 cites W2807395493 @default.
- W2927083635 cites W2826617513 @default.
- W2927083635 cites W2886870267 @default.
- W2927083635 cites W2892146033 @default.
- W2927083635 cites W2892871489 @default.
- W2927083635 cites W2902620820 @default.
- W2927083635 cites W2915685082 @default.
- W2927083635 cites W2963248616 @default.
- W2927083635 cites W4247436850 @default.
- W2927083635 doi "https://doi.org/10.1371/journal.pone.0214525" @default.
- W2927083635 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6445465" @default.
- W2927083635 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30939164" @default.
- W2927083635 hasPublicationYear "2019" @default.
- W2927083635 type Work @default.
- W2927083635 sameAs 2927083635 @default.
- W2927083635 citedByCount "15" @default.
- W2927083635 countsByYear W29270836352019 @default.
- W2927083635 countsByYear W29270836352020 @default.
- W2927083635 countsByYear W29270836352021 @default.
- W2927083635 countsByYear W29270836352022 @default.
- W2927083635 countsByYear W29270836352023 @default.
- W2927083635 crossrefType "journal-article" @default.
- W2927083635 hasAuthorship W2927083635A5039023703 @default.
- W2927083635 hasAuthorship W2927083635A5044940875 @default.
- W2927083635 hasAuthorship W2927083635A5058426311 @default.
- W2927083635 hasAuthorship W2927083635A5075321491 @default.
- W2927083635 hasAuthorship W2927083635A5082297475 @default.
- W2927083635 hasBestOaLocation W29270836351 @default.
- W2927083635 hasConcept C118487528 @default.
- W2927083635 hasConcept C142724271 @default.
- W2927083635 hasConcept C164866538 @default.
- W2927083635 hasConcept C168031717 @default.
- W2927083635 hasConcept C1862650 @default.
- W2927083635 hasConcept C190041318 @default.
- W2927083635 hasConcept C190385971 @default.
- W2927083635 hasConcept C199360897 @default.
- W2927083635 hasConcept C2778171261 @default.
- W2927083635 hasConcept C2778257484 @default.
- W2927083635 hasConcept C2778426673 @default.
- W2927083635 hasConcept C3017944768 @default.