Matches in SemOpenAlex for { <https://semopenalex.org/work/W2927449049> ?p ?o ?g. }
- W2927449049 endingPage "12" @default.
- W2927449049 startingPage "1" @default.
- W2927449049 abstract "This work presents a novel soft ensemble model (ANSEM) for financial distress prediction with different sample sizes. It integrates qualitative classifiers (expert system method, ES) and quantitative classifiers (convolutional neural network, CNN) based on the uni-int decision making method of soft set theory (UI). We introduce internet searches indices as new variables for financial distress prediction. By constructing a soft set representation of each classifier and then using the optimal decision on soft sets to identify the financial status of firms, ANSEM inherits advantages of ES, CNN, and UI. Empirical experiments with the real data set of Chinese listed firms demonstrate that the proposed ANSEM has superior predicting performance for financial distress on accuracy and stability with different sample sizes. Further discussions also show that internet searches indices can offer additional information to improve predicting performance." @default.
- W2927449049 created "2019-04-11" @default.
- W2927449049 creator A5008384374 @default.
- W2927449049 creator A5050671757 @default.
- W2927449049 creator A5090765616 @default.
- W2927449049 date "2019-04-04" @default.
- W2927449049 modified "2023-10-12" @default.
- W2927449049 title "A Novel Soft Ensemble Model for Financial Distress Prediction with Different Sample Sizes" @default.
- W2927449049 cites W1977117871 @default.
- W2927449049 cites W1978352585 @default.
- W2927449049 cites W1980197257 @default.
- W2927449049 cites W1986528915 @default.
- W2927449049 cites W2012680835 @default.
- W2927449049 cites W2013831240 @default.
- W2927449049 cites W2020848494 @default.
- W2927449049 cites W2035345857 @default.
- W2927449049 cites W2037781710 @default.
- W2927449049 cites W2048801439 @default.
- W2927449049 cites W2050102265 @default.
- W2927449049 cites W2052216493 @default.
- W2927449049 cites W2055622485 @default.
- W2927449049 cites W2069754181 @default.
- W2927449049 cites W2072768981 @default.
- W2927449049 cites W2094498086 @default.
- W2927449049 cites W2097752063 @default.
- W2927449049 cites W2117239687 @default.
- W2927449049 cites W2121958403 @default.
- W2927449049 cites W2149509893 @default.
- W2927449049 cites W2510541067 @default.
- W2927449049 cites W2563239383 @default.
- W2927449049 cites W2567086669 @default.
- W2927449049 cites W2571895513 @default.
- W2927449049 cites W2595942081 @default.
- W2927449049 cites W2612533127 @default.
- W2927449049 cites W2733300139 @default.
- W2927449049 cites W2735337297 @default.
- W2927449049 cites W2738004995 @default.
- W2927449049 cites W2766659517 @default.
- W2927449049 cites W2776811422 @default.
- W2927449049 cites W2790482946 @default.
- W2927449049 cites W2890297193 @default.
- W2927449049 cites W3125932636 @default.
- W2927449049 cites W4230474071 @default.
- W2927449049 doi "https://doi.org/10.1155/2019/3085247" @default.
- W2927449049 hasPublicationYear "2019" @default.
- W2927449049 type Work @default.
- W2927449049 sameAs 2927449049 @default.
- W2927449049 citedByCount "6" @default.
- W2927449049 countsByYear W29274490492020 @default.
- W2927449049 countsByYear W29274490492021 @default.
- W2927449049 countsByYear W29274490492022 @default.
- W2927449049 crossrefType "journal-article" @default.
- W2927449049 hasAuthorship W2927449049A5008384374 @default.
- W2927449049 hasAuthorship W2927449049A5050671757 @default.
- W2927449049 hasAuthorship W2927449049A5090765616 @default.
- W2927449049 hasBestOaLocation W29274490491 @default.
- W2927449049 hasConcept C10138342 @default.
- W2927449049 hasConcept C110875604 @default.
- W2927449049 hasConcept C119857082 @default.
- W2927449049 hasConcept C124101348 @default.
- W2927449049 hasConcept C136764020 @default.
- W2927449049 hasConcept C139265228 @default.
- W2927449049 hasConcept C140073362 @default.
- W2927449049 hasConcept C154945302 @default.
- W2927449049 hasConcept C15744967 @default.
- W2927449049 hasConcept C162324750 @default.
- W2927449049 hasConcept C177264268 @default.
- W2927449049 hasConcept C185592680 @default.
- W2927449049 hasConcept C198531522 @default.
- W2927449049 hasConcept C199360897 @default.
- W2927449049 hasConcept C2984760201 @default.
- W2927449049 hasConcept C41008148 @default.
- W2927449049 hasConcept C43617362 @default.
- W2927449049 hasConcept C50644808 @default.
- W2927449049 hasConcept C542102704 @default.
- W2927449049 hasConcept C73283319 @default.
- W2927449049 hasConcept C81363708 @default.
- W2927449049 hasConcept C95623464 @default.
- W2927449049 hasConceptScore W2927449049C10138342 @default.
- W2927449049 hasConceptScore W2927449049C110875604 @default.
- W2927449049 hasConceptScore W2927449049C119857082 @default.
- W2927449049 hasConceptScore W2927449049C124101348 @default.
- W2927449049 hasConceptScore W2927449049C136764020 @default.
- W2927449049 hasConceptScore W2927449049C139265228 @default.
- W2927449049 hasConceptScore W2927449049C140073362 @default.
- W2927449049 hasConceptScore W2927449049C154945302 @default.
- W2927449049 hasConceptScore W2927449049C15744967 @default.
- W2927449049 hasConceptScore W2927449049C162324750 @default.
- W2927449049 hasConceptScore W2927449049C177264268 @default.
- W2927449049 hasConceptScore W2927449049C185592680 @default.
- W2927449049 hasConceptScore W2927449049C198531522 @default.
- W2927449049 hasConceptScore W2927449049C199360897 @default.
- W2927449049 hasConceptScore W2927449049C2984760201 @default.
- W2927449049 hasConceptScore W2927449049C41008148 @default.
- W2927449049 hasConceptScore W2927449049C43617362 @default.
- W2927449049 hasConceptScore W2927449049C50644808 @default.
- W2927449049 hasConceptScore W2927449049C542102704 @default.
- W2927449049 hasConceptScore W2927449049C73283319 @default.