Matches in SemOpenAlex for { <https://semopenalex.org/work/W2927493998> ?p ?o ?g. }
- W2927493998 endingPage "180" @default.
- W2927493998 startingPage "158" @default.
- W2927493998 abstract "The present work is aimed at the numerical spatio-temporal characterization of the unsteady cavitating flow structures on a hydrofoil by means of Proper Orthogonal Decomposition (POD) and Fast Fourier Transform (FFT) techniques. Three different cavitation regimes have been investigated: bubble cavitation, cloud cavitation and supercavitation. The homogeneous mixture approach has been used, in combination with an extended Schnerr–Sauer cavitation model. The accuracy of the numerical predictions has been improved by means of the implementation of a Density Correction Model of the turbulent viscosity, and a simplified Population Balance Modeling (PBM) which solved the spatial distribution and the temporal evolution of the nuclei. In particular, the PBM has led to a reduction of the intensity of the evaporation inside the vapor cavities and a consequent condensation enhancement at the cavity closure and in the wake downstream. This phenomenon mainly impacted on the vapor cavity dynamics during supercavition by facilitating the formation of the re-entrant jet and the vapor cavity detachment. Also, during supercavitation the nuclei density nb exhibited maximum variations of about 35.6% with respect to the inlet nuclei density. As the cavitation number increased, both the intensity and the extension of oscillations significantly reduced, and in bubble cavitation regime nb fluctuated at amplitudes of about 10% of the inlet nuclei density. The characterization of the cavitation regimes revealed that the bubble cavitation regime had a more stable and periodic dynamics highlighted by a higher hydrodynamic efficiency and a reduced root mean square of the lift force. The cloud cavitation and the supercavitation exhibited a more violent bubble detachment which caused stronger oscillations of the vapor cavity as well as the pressure upstream. This was retrieved in an increase of the average drag coefficient of about the 38% due to the presence of vapor cloud transported downstream, which promoted the surge of the flow. The vorticity analysis underlined that the formation of the re-entrant jet and the bubble detachment were promoted by the baroclinic vorticity, while the dilatation vorticity drove the dynamics of the detached clouds, governed by the phase change phenomena. The FFT analysis of the dynamics of the vapor cavity and the pressure upstream led to the detection of the most representative frequencies and Strouhal numbers of each cavitation regimes, in particular (fs=16.6Hz, St=0.355) for bubble cavitation, (fs=10.74Hz, St=0.358) for cloud cavitation, and (fs=8.79Hz, St=0.300) during supercavitation. The POD analysis allowed for the detection of the most relevant cavitating structures, in relation to the vapor cavity fluctuations and their frequency content. Furthermore, the FFT analysis of the temporal eigenfunctions demonstrated that the first POD mode of the liquid volume fraction described the overall unsteady behavior previously detected. Instead, high order POD modes revealed frequency values well above the overall ones of the main flow previously detected." @default.
- W2927493998 created "2019-04-11" @default.
- W2927493998 creator A5002478556 @default.
- W2927493998 creator A5054955478 @default.
- W2927493998 creator A5082443197 @default.
- W2927493998 date "2019-06-01" @default.
- W2927493998 modified "2023-10-18" @default.
- W2927493998 title "Characterization of unsteady cavitating flow regimes around a hydrofoil, based on an extended Schnerr–Sauer model coupled with a nucleation model" @default.
- W2927493998 cites W1633869374 @default.
- W2927493998 cites W1924123705 @default.
- W2927493998 cites W1974097079 @default.
- W2927493998 cites W1977188109 @default.
- W2927493998 cites W1977704174 @default.
- W2927493998 cites W1982797066 @default.
- W2927493998 cites W1989475333 @default.
- W2927493998 cites W1996862749 @default.
- W2927493998 cites W2005981060 @default.
- W2927493998 cites W2006142183 @default.
- W2927493998 cites W2014356541 @default.
- W2927493998 cites W2031907152 @default.
- W2927493998 cites W2033599470 @default.
- W2927493998 cites W2040153902 @default.
- W2927493998 cites W2041453267 @default.
- W2927493998 cites W2042376423 @default.
- W2927493998 cites W2044048010 @default.
- W2927493998 cites W2048945896 @default.
- W2927493998 cites W2049947288 @default.
- W2927493998 cites W2052689893 @default.
- W2927493998 cites W2056141983 @default.
- W2927493998 cites W2069241611 @default.
- W2927493998 cites W2071141766 @default.
- W2927493998 cites W2075911399 @default.
- W2927493998 cites W2078649522 @default.
- W2927493998 cites W2084519446 @default.
- W2927493998 cites W2087558637 @default.
- W2927493998 cites W2112823474 @default.
- W2927493998 cites W2122991047 @default.
- W2927493998 cites W2124235852 @default.
- W2927493998 cites W2124891418 @default.
- W2927493998 cites W2128270698 @default.
- W2927493998 cites W2137178981 @default.
- W2927493998 cites W2147001347 @default.
- W2927493998 cites W2148674095 @default.
- W2927493998 cites W2148828852 @default.
- W2927493998 cites W2195032875 @default.
- W2927493998 cites W2236379006 @default.
- W2927493998 cites W2416637874 @default.
- W2927493998 cites W2523052585 @default.
- W2927493998 cites W2570640334 @default.
- W2927493998 cites W2584939205 @default.
- W2927493998 cites W2592194565 @default.
- W2927493998 cites W2598999472 @default.
- W2927493998 cites W2605760674 @default.
- W2927493998 cites W2731917791 @default.
- W2927493998 cites W2750592793 @default.
- W2927493998 cites W2752615764 @default.
- W2927493998 cites W2759687244 @default.
- W2927493998 cites W2764298193 @default.
- W2927493998 cites W2770344979 @default.
- W2927493998 cites W2782370866 @default.
- W2927493998 cites W2801625016 @default.
- W2927493998 cites W2803043016 @default.
- W2927493998 cites W2806607872 @default.
- W2927493998 cites W2815043756 @default.
- W2927493998 cites W3109070402 @default.
- W2927493998 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.025" @default.
- W2927493998 hasPublicationYear "2019" @default.
- W2927493998 type Work @default.
- W2927493998 sameAs 2927493998 @default.
- W2927493998 citedByCount "26" @default.
- W2927493998 countsByYear W29274939982019 @default.
- W2927493998 countsByYear W29274939982020 @default.
- W2927493998 countsByYear W29274939982021 @default.
- W2927493998 countsByYear W29274939982022 @default.
- W2927493998 countsByYear W29274939982023 @default.
- W2927493998 crossrefType "journal-article" @default.
- W2927493998 hasAuthorship W2927493998A5002478556 @default.
- W2927493998 hasAuthorship W2927493998A5054955478 @default.
- W2927493998 hasAuthorship W2927493998A5082443197 @default.
- W2927493998 hasConcept C119947313 @default.
- W2927493998 hasConcept C121332964 @default.
- W2927493998 hasConcept C157915830 @default.
- W2927493998 hasConcept C192562407 @default.
- W2927493998 hasConcept C196558001 @default.
- W2927493998 hasConcept C207057113 @default.
- W2927493998 hasConcept C38349280 @default.
- W2927493998 hasConcept C57879066 @default.
- W2927493998 hasConcept C61048295 @default.
- W2927493998 hasConcept C90291539 @default.
- W2927493998 hasConcept C97355855 @default.
- W2927493998 hasConceptScore W2927493998C119947313 @default.
- W2927493998 hasConceptScore W2927493998C121332964 @default.
- W2927493998 hasConceptScore W2927493998C157915830 @default.
- W2927493998 hasConceptScore W2927493998C192562407 @default.
- W2927493998 hasConceptScore W2927493998C196558001 @default.
- W2927493998 hasConceptScore W2927493998C207057113 @default.
- W2927493998 hasConceptScore W2927493998C38349280 @default.
- W2927493998 hasConceptScore W2927493998C57879066 @default.