Matches in SemOpenAlex for { <https://semopenalex.org/work/W2927687900> ?p ?o ?g. }
- W2927687900 endingPage "3353" @default.
- W2927687900 startingPage "3344" @default.
- W2927687900 abstract "Coarse-grained (CG) simulations have allowed access to larger length scales and longer time scales in the study of the dynamic processes of large biomolecules than all-atom (AA) molecular dynamics (MD) simulations. Backmapping from CG models to AA structures has long been studied because it enables us to gain detailed structure insights from CG simulations. Many methods first construct an AA structure from the CG model by fragments, random placement, or geometrical rules and subsequently optimize the solution via energy minimization, simulated annealing or position-restrained simulations. However, such methods may only work well on residue-level CG models and cannot consider the deviations of CG models. In this work, we describe, to the best of our knowledge, a new backmapping method based on Bayesian inference and restrained MD simulations. Restraints with log harmonic energy terms are defined according to the target CG model using the Bayesian inference in which the CG deviations can be estimated. From an initial AA structure obtained from either high-resolution experiments or homology modeling, a MD simulation with the aforementioned restraints is performed to obtain a final AA structure that is a backmapping of the target CG model. The method was validated using multiresolution CG models of the soluble extracellular region of the human epidermal growth factor receptor and was further applied to construct AA structures from CG simulations of the nucleosome core particle. The results demonstrate that our method can generate accurate AA structures of different types of biomolecules from multiple CG models with either residue-level resolution or much lower resolution than one-site-per-residue." @default.
- W2927687900 created "2019-04-11" @default.
- W2927687900 creator A5004134714 @default.
- W2927687900 creator A5021905687 @default.
- W2927687900 creator A5023660424 @default.
- W2927687900 creator A5025941548 @default.
- W2927687900 date "2019-03-25" @default.
- W2927687900 modified "2023-10-13" @default.
- W2927687900 title "Backmapping from Multiresolution Coarse-Grained Models to Atomic Structures of Large Biomolecules by Restrained Molecular Dynamics Simulations Using Bayesian Inference" @default.
- W2927687900 cites W1963847157 @default.
- W2927687900 cites W1966078827 @default.
- W2927687900 cites W1970644130 @default.
- W2927687900 cites W1976308393 @default.
- W2927687900 cites W1976499671 @default.
- W2927687900 cites W1984909504 @default.
- W2927687900 cites W1990877090 @default.
- W2927687900 cites W2008708467 @default.
- W2927687900 cites W2010713749 @default.
- W2927687900 cites W2011665065 @default.
- W2927687900 cites W2020579993 @default.
- W2927687900 cites W2024759709 @default.
- W2927687900 cites W2029667189 @default.
- W2927687900 cites W2031163353 @default.
- W2927687900 cites W2034307675 @default.
- W2927687900 cites W2035687084 @default.
- W2927687900 cites W2038840577 @default.
- W2927687900 cites W2045407836 @default.
- W2927687900 cites W2046141572 @default.
- W2927687900 cites W2048754774 @default.
- W2927687900 cites W2051091550 @default.
- W2927687900 cites W2052299042 @default.
- W2927687900 cites W2057420739 @default.
- W2927687900 cites W2057477511 @default.
- W2927687900 cites W2059013803 @default.
- W2927687900 cites W2064068263 @default.
- W2927687900 cites W2065283382 @default.
- W2927687900 cites W2065864578 @default.
- W2927687900 cites W2067634728 @default.
- W2927687900 cites W2069123478 @default.
- W2927687900 cites W2072973641 @default.
- W2927687900 cites W2076368603 @default.
- W2927687900 cites W2087277033 @default.
- W2927687900 cites W2088226405 @default.
- W2927687900 cites W2102663109 @default.
- W2927687900 cites W2107434774 @default.
- W2927687900 cites W2113994268 @default.
- W2927687900 cites W2116682661 @default.
- W2927687900 cites W2119267663 @default.
- W2927687900 cites W2136849653 @default.
- W2927687900 cites W2137480570 @default.
- W2927687900 cites W2139425469 @default.
- W2927687900 cites W2142595184 @default.
- W2927687900 cites W2143600397 @default.
- W2927687900 cites W2144792857 @default.
- W2927687900 cites W2151553287 @default.
- W2927687900 cites W2171695688 @default.
- W2927687900 cites W2207783648 @default.
- W2927687900 cites W2234216373 @default.
- W2927687900 cites W2277366394 @default.
- W2927687900 cites W2289509599 @default.
- W2927687900 cites W2292169708 @default.
- W2927687900 cites W2343331334 @default.
- W2927687900 cites W2604948333 @default.
- W2927687900 cites W2759101030 @default.
- W2927687900 cites W2949308290 @default.
- W2927687900 doi "https://doi.org/10.1021/acs.jctc.9b00062" @default.
- W2927687900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30908042" @default.
- W2927687900 hasPublicationYear "2019" @default.
- W2927687900 type Work @default.
- W2927687900 sameAs 2927687900 @default.
- W2927687900 citedByCount "35" @default.
- W2927687900 countsByYear W29276879002019 @default.
- W2927687900 countsByYear W29276879002020 @default.
- W2927687900 countsByYear W29276879002021 @default.
- W2927687900 countsByYear W29276879002022 @default.
- W2927687900 countsByYear W29276879002023 @default.
- W2927687900 crossrefType "journal-article" @default.
- W2927687900 hasAuthorship W2927687900A5004134714 @default.
- W2927687900 hasAuthorship W2927687900A5021905687 @default.
- W2927687900 hasAuthorship W2927687900A5023660424 @default.
- W2927687900 hasAuthorship W2927687900A5025941548 @default.
- W2927687900 hasConcept C107673813 @default.
- W2927687900 hasConcept C11413529 @default.
- W2927687900 hasConcept C121332964 @default.
- W2927687900 hasConcept C121864883 @default.
- W2927687900 hasConcept C126980161 @default.
- W2927687900 hasConcept C147597530 @default.
- W2927687900 hasConcept C14961307 @default.
- W2927687900 hasConcept C154945302 @default.
- W2927687900 hasConcept C160234255 @default.
- W2927687900 hasConcept C171250308 @default.
- W2927687900 hasConcept C185592680 @default.
- W2927687900 hasConcept C186060115 @default.
- W2927687900 hasConcept C192562407 @default.
- W2927687900 hasConcept C2776214188 @default.
- W2927687900 hasConcept C38111792 @default.
- W2927687900 hasConcept C41008148 @default.
- W2927687900 hasConcept C46141821 @default.