Matches in SemOpenAlex for { <https://semopenalex.org/work/W2929529664> ?p ?o ?g. }
- W2929529664 endingPage "1222" @default.
- W2929529664 startingPage "1214" @default.
- W2929529664 abstract "Abstract A novel prediction and optimization method based on improved generalized regression neural network (GRNN) and particle swarm optimization (PSO) algorithm is proposed to optimize the process conditions for styrene epoxidation to achieve higher yields. This model was designed to optimize the five input parameters reaction temperature and time as well as catalyst, solvent, and oxidant dosage. The output of the improved GRNN was given to the PSO algorithm to optimize the process conditions. The optimal smoothing parameter σ of GRNN was chosen from the training sample with a minimum cross validation error. Under the five optimized process conditions the maximum yield reached 95.76 %. This innovative model of improved GRNN hybrid PSO algorithm proved to be a useful tool for optimization of process conditions for styrene epoxidation." @default.
- W2929529664 created "2019-04-11" @default.
- W2929529664 creator A5034474103 @default.
- W2929529664 creator A5054340336 @default.
- W2929529664 creator A5063493692 @default.
- W2929529664 creator A5077528627 @default.
- W2929529664 date "2019-04-26" @default.
- W2929529664 modified "2023-10-15" @default.
- W2929529664 title "Optimization of Process Conditions for Styrene Epoxidation Based on the Artificial Intelligence Method" @default.
- W2929529664 cites W1966357114 @default.
- W2929529664 cites W1974707715 @default.
- W2929529664 cites W1975451996 @default.
- W2929529664 cites W1987252671 @default.
- W2929529664 cites W1995341919 @default.
- W2929529664 cites W1997159574 @default.
- W2929529664 cites W2000779101 @default.
- W2929529664 cites W2010188685 @default.
- W2929529664 cites W2013183244 @default.
- W2929529664 cites W2015288243 @default.
- W2929529664 cites W2016857257 @default.
- W2929529664 cites W2018617349 @default.
- W2929529664 cites W2019825228 @default.
- W2929529664 cites W2021136490 @default.
- W2929529664 cites W2031812639 @default.
- W2929529664 cites W2033250181 @default.
- W2929529664 cites W2034104647 @default.
- W2929529664 cites W2035714101 @default.
- W2929529664 cites W2044630583 @default.
- W2929529664 cites W2048570605 @default.
- W2929529664 cites W2050757970 @default.
- W2929529664 cites W2051569018 @default.
- W2929529664 cites W2052779239 @default.
- W2929529664 cites W2053839248 @default.
- W2929529664 cites W2055289038 @default.
- W2929529664 cites W2055555271 @default.
- W2929529664 cites W2058067655 @default.
- W2929529664 cites W2060126995 @default.
- W2929529664 cites W2064144712 @default.
- W2929529664 cites W2075153278 @default.
- W2929529664 cites W2083384411 @default.
- W2929529664 cites W2083474188 @default.
- W2929529664 cites W2086151314 @default.
- W2929529664 cites W2134608200 @default.
- W2929529664 cites W2135172227 @default.
- W2929529664 cites W2141754715 @default.
- W2929529664 cites W2149723649 @default.
- W2929529664 cites W2155837945 @default.
- W2929529664 cites W2316511368 @default.
- W2929529664 cites W2416270402 @default.
- W2929529664 cites W2754119943 @default.
- W2929529664 doi "https://doi.org/10.1002/ceat.201800018" @default.
- W2929529664 hasPublicationYear "2019" @default.
- W2929529664 type Work @default.
- W2929529664 sameAs 2929529664 @default.
- W2929529664 citedByCount "2" @default.
- W2929529664 countsByYear W29295296642022 @default.
- W2929529664 countsByYear W29295296642023 @default.
- W2929529664 crossrefType "journal-article" @default.
- W2929529664 hasAuthorship W2929529664A5034474103 @default.
- W2929529664 hasAuthorship W2929529664A5054340336 @default.
- W2929529664 hasAuthorship W2929529664A5063493692 @default.
- W2929529664 hasAuthorship W2929529664A5077528627 @default.
- W2929529664 hasConcept C111919701 @default.
- W2929529664 hasConcept C11413529 @default.
- W2929529664 hasConcept C126255220 @default.
- W2929529664 hasConcept C154945302 @default.
- W2929529664 hasConcept C15920480 @default.
- W2929529664 hasConcept C159985019 @default.
- W2929529664 hasConcept C167085575 @default.
- W2929529664 hasConcept C192562407 @default.
- W2929529664 hasConcept C2777566558 @default.
- W2929529664 hasConcept C31972630 @default.
- W2929529664 hasConcept C33923547 @default.
- W2929529664 hasConcept C3770464 @default.
- W2929529664 hasConcept C41008148 @default.
- W2929529664 hasConcept C50644808 @default.
- W2929529664 hasConcept C521977710 @default.
- W2929529664 hasConcept C85617194 @default.
- W2929529664 hasConcept C98045186 @default.
- W2929529664 hasConceptScore W2929529664C111919701 @default.
- W2929529664 hasConceptScore W2929529664C11413529 @default.
- W2929529664 hasConceptScore W2929529664C126255220 @default.
- W2929529664 hasConceptScore W2929529664C154945302 @default.
- W2929529664 hasConceptScore W2929529664C15920480 @default.
- W2929529664 hasConceptScore W2929529664C159985019 @default.
- W2929529664 hasConceptScore W2929529664C167085575 @default.
- W2929529664 hasConceptScore W2929529664C192562407 @default.
- W2929529664 hasConceptScore W2929529664C2777566558 @default.
- W2929529664 hasConceptScore W2929529664C31972630 @default.
- W2929529664 hasConceptScore W2929529664C33923547 @default.
- W2929529664 hasConceptScore W2929529664C3770464 @default.
- W2929529664 hasConceptScore W2929529664C41008148 @default.
- W2929529664 hasConceptScore W2929529664C50644808 @default.
- W2929529664 hasConceptScore W2929529664C521977710 @default.
- W2929529664 hasConceptScore W2929529664C85617194 @default.
- W2929529664 hasConceptScore W2929529664C98045186 @default.
- W2929529664 hasFunder F4320321001 @default.
- W2929529664 hasIssue "6" @default.