Matches in SemOpenAlex for { <https://semopenalex.org/work/W2930108727> ?p ?o ?g. }
- W2930108727 endingPage "e0214966" @default.
- W2930108727 startingPage "e0214966" @default.
- W2930108727 abstract "Motorcycle crash severity is under-researched in Ghana. Thus, the probable risk factors and association between these factors and motorcycle crash severity outcomes is not known. Traditional statistical models have intrinsic assumptions and pre-defined correlations that, if flouted, can generate inaccurate results. In this study, machine learning based algorithms were employed to predict and classify motorcycle crash severity. Machine learning based techniques are non-parametric models without the presumption of relationships between endogenous and exogenous variables. The main aim of this research is to evaluate and compare different approaches to modeling motorcycle crash severity as well as investigating the effect of risk factors on the injury outcomes of motorcycle crashes. Motorcycle crash dataset between 2011 and 2015 was extracted from the National Road Traffic Crash Database at the Building and Road Research Institute (BRRI) in Ghana. The dataset was classified into four injury severity categories: fatal, hospitalized, injured, and damage-only. Three machine learning based models were developed: J48 Decision Tree Classifier, Random Forest (RF) and Instance-Based learning with parameter k (IBk) were employed to model the severity of injury in a motorcycle crash. These machine learning algorithms were validated using 10-fold cross-validation technique. The three machine learning based algorithms were compared with one another and the statistical model: multinomial logit model (MNLM). Also, the relative importance analysis of the attribute was conducted to determine the impact of these attributes on injury severity outcomes. The results of the study reveal that the predictions of machine learning algorithms are superior to the MNLM in accuracy and effectiveness, and the RF-based algorithms show the overall best agreement with the experimental data out of the three machine learning algorithms, for its global optimization and extrapolation ability. Location type, time of the crash, settlement type, collision partner, collision type, road separation, road surface type, the day of the week, and road shoulder condition were found as the critical determinants of motorcycle crash injury severity." @default.
- W2930108727 created "2019-04-11" @default.
- W2930108727 creator A5017564676 @default.
- W2930108727 creator A5023822841 @default.
- W2930108727 date "2019-04-04" @default.
- W2930108727 modified "2023-10-14" @default.
- W2930108727 title "A comparative study on machine learning based algorithms for prediction of motorcycle crash severity" @default.
- W2930108727 cites W1968551146 @default.
- W2930108727 cites W1969320611 @default.
- W2930108727 cites W1970559658 @default.
- W2930108727 cites W1978685211 @default.
- W2930108727 cites W1979505862 @default.
- W2930108727 cites W1979874437 @default.
- W2930108727 cites W1980399291 @default.
- W2930108727 cites W1982483712 @default.
- W2930108727 cites W1984044202 @default.
- W2930108727 cites W1991787996 @default.
- W2930108727 cites W1993015261 @default.
- W2930108727 cites W1999616870 @default.
- W2930108727 cites W2009377713 @default.
- W2930108727 cites W2012018511 @default.
- W2930108727 cites W2012838480 @default.
- W2930108727 cites W2013845817 @default.
- W2930108727 cites W2015683568 @default.
- W2930108727 cites W2019860663 @default.
- W2930108727 cites W2023131190 @default.
- W2930108727 cites W2037787252 @default.
- W2930108727 cites W2040418644 @default.
- W2930108727 cites W2051091358 @default.
- W2930108727 cites W2052501607 @default.
- W2930108727 cites W2055034317 @default.
- W2930108727 cites W2063763346 @default.
- W2930108727 cites W2063860234 @default.
- W2930108727 cites W2075311013 @default.
- W2930108727 cites W2076700521 @default.
- W2930108727 cites W2080911646 @default.
- W2930108727 cites W2083119699 @default.
- W2930108727 cites W2086927126 @default.
- W2930108727 cites W2097027328 @default.
- W2930108727 cites W2110400668 @default.
- W2930108727 cites W2118193671 @default.
- W2930108727 cites W2124565149 @default.
- W2930108727 cites W2126859005 @default.
- W2930108727 cites W2132735659 @default.
- W2930108727 cites W2136625176 @default.
- W2930108727 cites W2138623287 @default.
- W2930108727 cites W2139796511 @default.
- W2930108727 cites W2146623098 @default.
- W2930108727 cites W2156259828 @default.
- W2930108727 cites W2158698691 @default.
- W2930108727 cites W2164874467 @default.
- W2930108727 cites W2259144712 @default.
- W2930108727 cites W2499581503 @default.
- W2930108727 cites W2529497982 @default.
- W2930108727 cites W2575125657 @default.
- W2930108727 cites W2605021096 @default.
- W2930108727 cites W2618822627 @default.
- W2930108727 cites W2750591756 @default.
- W2930108727 cites W2758145709 @default.
- W2930108727 cites W2765279393 @default.
- W2930108727 cites W2790297009 @default.
- W2930108727 cites W2803931329 @default.
- W2930108727 cites W2886005246 @default.
- W2930108727 cites W2888065284 @default.
- W2930108727 cites W2899037650 @default.
- W2930108727 cites W2899071594 @default.
- W2930108727 cites W2911964244 @default.
- W2930108727 cites W4244238212 @default.
- W2930108727 doi "https://doi.org/10.1371/journal.pone.0214966" @default.
- W2930108727 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6448880" @default.
- W2930108727 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30947250" @default.
- W2930108727 hasPublicationYear "2019" @default.
- W2930108727 type Work @default.
- W2930108727 sameAs 2930108727 @default.
- W2930108727 citedByCount "69" @default.
- W2930108727 countsByYear W29301087272019 @default.
- W2930108727 countsByYear W29301087272020 @default.
- W2930108727 countsByYear W29301087272021 @default.
- W2930108727 countsByYear W29301087272022 @default.
- W2930108727 countsByYear W29301087272023 @default.
- W2930108727 crossrefType "journal-article" @default.
- W2930108727 hasAuthorship W2930108727A5017564676 @default.
- W2930108727 hasAuthorship W2930108727A5023822841 @default.
- W2930108727 hasBestOaLocation W29301087271 @default.
- W2930108727 hasConcept C117568660 @default.
- W2930108727 hasConcept C119857082 @default.
- W2930108727 hasConcept C12267149 @default.
- W2930108727 hasConcept C151956035 @default.
- W2930108727 hasConcept C154945302 @default.
- W2930108727 hasConcept C169258074 @default.
- W2930108727 hasConcept C183469790 @default.
- W2930108727 hasConcept C199360897 @default.
- W2930108727 hasConcept C3017944768 @default.
- W2930108727 hasConcept C41008148 @default.
- W2930108727 hasConcept C52001869 @default.
- W2930108727 hasConcept C52003472 @default.
- W2930108727 hasConcept C545542383 @default.
- W2930108727 hasConcept C71924100 @default.