Matches in SemOpenAlex for { <https://semopenalex.org/work/W2930688509> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2930688509 abstract "PreviousNext No AccessSEG 2018 Workshop: SEG Maximizing Asset Value Through Artificial Intelligence and Machine Learning, Beijing, China, 17–19 September 2018Generative Adversarial Networks for Seismic Data InterpolationAuthors: Dekuan ChangWuyang YangXueshan YongHaishan LiDekuan ChangResearch Institute of Petroleum Exploration & Development-Northwest, PetroChinaSearch for more papers by this author, Wuyang YangResearch Institute of Petroleum Exploration & Development-Northwest, PetroChinaSearch for more papers by this author, Xueshan YongResearch Institute of Petroleum Exploration & Development-Northwest, PetroChinaSearch for more papers by this author, and Haishan LiResearch Institute of Petroleum Exploration & Development-Northwest, PetroChinaSearch for more papers by this authorhttps://doi.org/10.1190/AIML2018-11.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract The interpolation of missing seismic traces has always been a research hotspot. The high-precision interpolation technology is an effective way to compensate for the missing seismic traces. In this paper, we present a method for seismic data interpolation by using the generative adversarial network (SIGAN). The objective optimization function of this method consists of the loss function of generator G and discriminator D. Generator G uses a deep residual network (ResNet), which is an end-to-end network, and discriminator D uses a conventional CNN network. After the SIGAN has been trained, we can use generator G to reconstruct missing seismic traces. Through numerical tests, the difference between the seismic data generated by SPGAN and the original data is very small, which illustrates the potential of SIGAN for seismic data interpolation. Keywords: interpolation, optimization, algorithmPermalink: https://doi.org/10.1190/AIML2018-11.1FiguresReferencesRelatedDetailsCited byGenerative adversarial networks review in earthquake-related engineering fields28 February 2023 | Bulletin of Earthquake Engineering, Vol. 10Unsupervised deep learning for 3D interpolation of highly incomplete dataOmar M. Saad, Sergey Fomel, Raymond Abma, and Yangkang Chen13 December 2022 | GEOPHYSICS, Vol. 88, No. 1Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs1 January 2023 | Sustainability, Vol. 15, No. 1Seismic image-to-image translation using a conditional GAN with Bayesian inferenceXiaolei Song, Muhong Zhou, Petr Jilek, Rodney Johnston, Sean Cardinez, and Kareem Vincent15 August 2022Reconstruction of Missing Ground-Penetrating Radar Traces Using Simplified U-NetIEEE Geoscience and Remote Sensing Letters, Vol. 19Seismic Data Reconstruction via Wavelet-Based Residual Deep LearningIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Self-Supervised Learning for Efficient Antialiasing Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Seismic Data Interpolation Using Dual-Domain Conditional Generative Adversarial NetworksIEEE Geoscience and Remote Sensing Letters, Vol. 18, No. 10Seismic data interpolation with conditional generative adversarial network in time and frequency domainD. K. Chang, W. Y. Yang, X. S. Yong, and H. S Li10 August 2019 SEG 2018 Workshop: SEG Maximizing Asset Value Through Artificial Intelligence and Machine Learning, Beijing, China, 17–19 September 2018ISSN (online):2159-6832Copyright: 2018 Pages: 244 publication data© 2018 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 14 Dec 2018 CITATION INFORMATION Dekuan Chang, Wuyang Yang, Xueshan Yong, and Haishan Li, (2018), Generative Adversarial Networks for Seismic Data Interpolation, SEG Global Meeting Abstracts : 40-43. https://doi.org/10.1190/AIML2018-11.1 Plain-Language Summary KeywordsinterpolationoptimizationalgorithmPDF DownloadLoading ..." @default.
- W2930688509 created "2019-04-11" @default.
- W2930688509 creator A5008043897 @default.
- W2930688509 creator A5010937741 @default.
- W2930688509 creator A5067108920 @default.
- W2930688509 creator A5079394027 @default.
- W2930688509 date "2018-12-14" @default.
- W2930688509 modified "2023-09-23" @default.
- W2930688509 title "Generative Adversarial Networks for Seismic Data Interpolation" @default.
- W2930688509 cites W1981607562 @default.
- W2930688509 cites W2037585564 @default.
- W2930688509 cites W2090319605 @default.
- W2930688509 cites W2139536096 @default.
- W2930688509 cites W2148502869 @default.
- W2930688509 cites W2170860899 @default.
- W2930688509 cites W2507906825 @default.
- W2930688509 cites W2592517375 @default.
- W2930688509 cites W2605232094 @default.
- W2930688509 cites W2745439097 @default.
- W2930688509 cites W2765811365 @default.
- W2930688509 cites W2894683830 @default.
- W2930688509 doi "https://doi.org/10.1190/aiml2018-11.1" @default.
- W2930688509 hasPublicationYear "2018" @default.
- W2930688509 type Work @default.
- W2930688509 sameAs 2930688509 @default.
- W2930688509 citedByCount "11" @default.
- W2930688509 countsByYear W29306885092019 @default.
- W2930688509 countsByYear W29306885092021 @default.
- W2930688509 countsByYear W29306885092022 @default.
- W2930688509 countsByYear W29306885092023 @default.
- W2930688509 crossrefType "proceedings-article" @default.
- W2930688509 hasAuthorship W2930688509A5008043897 @default.
- W2930688509 hasAuthorship W2930688509A5010937741 @default.
- W2930688509 hasAuthorship W2930688509A5067108920 @default.
- W2930688509 hasAuthorship W2930688509A5079394027 @default.
- W2930688509 hasConcept C108583219 @default.
- W2930688509 hasConcept C115961682 @default.
- W2930688509 hasConcept C121332964 @default.
- W2930688509 hasConcept C124101348 @default.
- W2930688509 hasConcept C137800194 @default.
- W2930688509 hasConcept C154945302 @default.
- W2930688509 hasConcept C163258240 @default.
- W2930688509 hasConcept C2779803651 @default.
- W2930688509 hasConcept C2780992000 @default.
- W2930688509 hasConcept C37736160 @default.
- W2930688509 hasConcept C41008148 @default.
- W2930688509 hasConcept C62520636 @default.
- W2930688509 hasConcept C76155785 @default.
- W2930688509 hasConcept C94915269 @default.
- W2930688509 hasConceptScore W2930688509C108583219 @default.
- W2930688509 hasConceptScore W2930688509C115961682 @default.
- W2930688509 hasConceptScore W2930688509C121332964 @default.
- W2930688509 hasConceptScore W2930688509C124101348 @default.
- W2930688509 hasConceptScore W2930688509C137800194 @default.
- W2930688509 hasConceptScore W2930688509C154945302 @default.
- W2930688509 hasConceptScore W2930688509C163258240 @default.
- W2930688509 hasConceptScore W2930688509C2779803651 @default.
- W2930688509 hasConceptScore W2930688509C2780992000 @default.
- W2930688509 hasConceptScore W2930688509C37736160 @default.
- W2930688509 hasConceptScore W2930688509C41008148 @default.
- W2930688509 hasConceptScore W2930688509C62520636 @default.
- W2930688509 hasConceptScore W2930688509C76155785 @default.
- W2930688509 hasConceptScore W2930688509C94915269 @default.
- W2930688509 hasLocation W29306885091 @default.
- W2930688509 hasOpenAccess W2930688509 @default.
- W2930688509 hasPrimaryLocation W29306885091 @default.
- W2930688509 hasRelatedWork W2554314924 @default.
- W2930688509 hasRelatedWork W2803949585 @default.
- W2930688509 hasRelatedWork W2952936466 @default.
- W2930688509 hasRelatedWork W2953246223 @default.
- W2930688509 hasRelatedWork W2975432854 @default.
- W2930688509 hasRelatedWork W3005996785 @default.
- W2930688509 hasRelatedWork W3007383607 @default.
- W2930688509 hasRelatedWork W3197610371 @default.
- W2930688509 hasRelatedWork W4293320219 @default.
- W2930688509 hasRelatedWork W4297796860 @default.
- W2930688509 isParatext "false" @default.
- W2930688509 isRetracted "false" @default.
- W2930688509 magId "2930688509" @default.
- W2930688509 workType "article" @default.