Matches in SemOpenAlex for { <https://semopenalex.org/work/W2930726706> ?p ?o ?g. }
- W2930726706 abstract "Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset." @default.
- W2930726706 created "2019-04-11" @default.
- W2930726706 creator A5008826433 @default.
- W2930726706 creator A5015011965 @default.
- W2930726706 creator A5016060924 @default.
- W2930726706 date "2019-04-03" @default.
- W2930726706 modified "2023-09-26" @default.
- W2930726706 title "CAN-NER: Convolutional Attention Network for Chinese Named Entity Recognition" @default.
- W2930726706 cites W1940872118 @default.
- W2930726706 cites W2158899491 @default.
- W2930726706 cites W2250387831 @default.
- W2930726706 cites W2250709962 @default.
- W2930726706 cites W2250999640 @default.
- W2930726706 cites W2251435463 @default.
- W2930726706 cites W2252066972 @default.
- W2930726706 cites W2296283641 @default.
- W2930726706 cites W2551396370 @default.
- W2930726706 cites W2552553554 @default.
- W2930726706 cites W2567657016 @default.
- W2930726706 cites W2579285701 @default.
- W2930726706 cites W2605215742 @default.
- W2930726706 cites W2613709840 @default.
- W2930726706 cites W2756381707 @default.
- W2930726706 cites W2757369719 @default.
- W2930726706 cites W2774687429 @default.
- W2930726706 cites W2788647998 @default.
- W2930726706 cites W2885353156 @default.
- W2930726706 cites W2886923263 @default.
- W2930726706 cites W2890459330 @default.
- W2930726706 cites W2904442979 @default.
- W2930726706 cites W2962739339 @default.
- W2930726706 cites W2962902328 @default.
- W2930726706 cites W2962904552 @default.
- W2930726706 cites W2963270153 @default.
- W2930726706 cites W2963338481 @default.
- W2930726706 cites W2963341956 @default.
- W2930726706 cites W2963403868 @default.
- W2930726706 cites W2963472581 @default.
- W2930726706 cites W2963560594 @default.
- W2930726706 cites W2963625095 @default.
- W2930726706 cites W2963641259 @default.
- W2930726706 cites W2963682821 @default.
- W2930726706 cites W2963741336 @default.
- W2930726706 cites W2964093505 @default.
- W2930726706 cites W2964167098 @default.
- W2930726706 cites W2964189376 @default.
- W2930726706 cites W2964194354 @default.
- W2930726706 cites W3144382987 @default.
- W2930726706 cites W65845428 @default.
- W2930726706 cites W6908809 @default.
- W2930726706 cites W800621058 @default.
- W2930726706 hasPublicationYear "2019" @default.
- W2930726706 type Work @default.
- W2930726706 sameAs 2930726706 @default.
- W2930726706 citedByCount "9" @default.
- W2930726706 countsByYear W29307267062019 @default.
- W2930726706 countsByYear W29307267062020 @default.
- W2930726706 crossrefType "posted-content" @default.
- W2930726706 hasAuthorship W2930726706A5008826433 @default.
- W2930726706 hasAuthorship W2930726706A5015011965 @default.
- W2930726706 hasAuthorship W2930726706A5016060924 @default.
- W2930726706 hasConcept C134306372 @default.
- W2930726706 hasConcept C138885662 @default.
- W2930726706 hasConcept C154945302 @default.
- W2930726706 hasConcept C162324750 @default.
- W2930726706 hasConcept C178790620 @default.
- W2930726706 hasConcept C185592680 @default.
- W2930726706 hasConcept C187736073 @default.
- W2930726706 hasConcept C204321447 @default.
- W2930726706 hasConcept C2777462759 @default.
- W2930726706 hasConcept C2777530160 @default.
- W2930726706 hasConcept C2777601683 @default.
- W2930726706 hasConcept C2778121359 @default.
- W2930726706 hasConcept C2779135771 @default.
- W2930726706 hasConcept C2779227376 @default.
- W2930726706 hasConcept C2780451532 @default.
- W2930726706 hasConcept C2781051154 @default.
- W2930726706 hasConcept C28490314 @default.
- W2930726706 hasConcept C33923547 @default.
- W2930726706 hasConcept C36503486 @default.
- W2930726706 hasConcept C41008148 @default.
- W2930726706 hasConcept C41608201 @default.
- W2930726706 hasConcept C41895202 @default.
- W2930726706 hasConcept C81363708 @default.
- W2930726706 hasConcept C89600930 @default.
- W2930726706 hasConcept C90805587 @default.
- W2930726706 hasConceptScore W2930726706C134306372 @default.
- W2930726706 hasConceptScore W2930726706C138885662 @default.
- W2930726706 hasConceptScore W2930726706C154945302 @default.
- W2930726706 hasConceptScore W2930726706C162324750 @default.
- W2930726706 hasConceptScore W2930726706C178790620 @default.
- W2930726706 hasConceptScore W2930726706C185592680 @default.
- W2930726706 hasConceptScore W2930726706C187736073 @default.
- W2930726706 hasConceptScore W2930726706C204321447 @default.
- W2930726706 hasConceptScore W2930726706C2777462759 @default.
- W2930726706 hasConceptScore W2930726706C2777530160 @default.
- W2930726706 hasConceptScore W2930726706C2777601683 @default.
- W2930726706 hasConceptScore W2930726706C2778121359 @default.
- W2930726706 hasConceptScore W2930726706C2779135771 @default.
- W2930726706 hasConceptScore W2930726706C2779227376 @default.