Matches in SemOpenAlex for { <https://semopenalex.org/work/W2930763511> ?p ?o ?g. }
- W2930763511 endingPage "295" @default.
- W2930763511 startingPage "286" @default.
- W2930763511 abstract "The characterization of cardiac function is of high clinical interest for early diagnosis and better patient follow-up in cardiovascular diseases. A large number of cardiac image analysis methods and more precisely in cine-Magnetic Resonance Imaging (MRI) have been proposed to quantify both shape and motion parameters. However, the first major problem to address lies in the cardiac image segmentation that is most often needed to extract the myocardium before any other process such as motion tracking, or registration. Moreover, intelligent systems based on classification and learning techniques have emerged over the last years in medical imaging. In this paper, a new method is proposed to help medical experts in classifying the Left Ventricle (LV) wall motion without the need of image segmentation and through the learning of motion features by using dictionary learning techniques. Specifically the novelty of this approach lies in the extraction of new spatio-temporal descriptors and in the use of discriminative dictionary learning (DL) techniques to classify normal/abnormal LV function in cardiac MRI. Local radial spatio-temporal profiles are first extracted from bidimensional (2D) short axis (SAX) MRI images, for each anatomical segment of the LV cavity. These profiles inherently contain discriminatory information that can help for cardiac motion characterization. An advantage of this approach is that these profiles are constructed from a very limited user interaction that corresponds to a number of five points in only one frame of the sequence, (without the need of LV boundaries segmentation) and by exploiting all the phases of the cardiac cycle. Two specific discriminative DL algorithms have been selected for the LV wall classification based on these profiles: Label Consistent K-SVD (LC-KSVD) and Fisher Discriminative (FD-DL). For the application of the proposed methods, cine-MR SAX images have been collected from a control group of 9 healthy subjects and from 9 patients with cardiac dyssynchrony. Radial strain curves in 2D Speckle Tracking Echocardiography (2D-STE) have been analysed for the patient group and have been used as reference truth. They allowed to label each profile as normal or abnormal. The best performance has been achieved in the Wavelet domain by the LC-KSVD algorithm with an accuracy of 84.07% in the classification of radial spatio-temporal profiles and using a leave-one-out patient cross validation. The approach has been compared with recent methods of the literature and offers a good compromise between performance, user interaction, time computing and complexity. This new method of LV classification, with minimal user interaction and based on discriminative DL has not been previously reported. It could help to improve the performance of pre-screening systems for cardiac assessment, which can affect positively the quality of the early diagnosis for heart failure patients." @default.
- W2930763511 created "2019-04-11" @default.
- W2930763511 creator A5012367599 @default.
- W2930763511 creator A5023712545 @default.
- W2930763511 creator A5028310780 @default.
- W2930763511 creator A5028937897 @default.
- W2930763511 creator A5053127930 @default.
- W2930763511 creator A5076298725 @default.
- W2930763511 date "2019-09-01" @default.
- W2930763511 modified "2023-10-15" @default.
- W2930763511 title "Discriminative dictionary learning for local LV wall motion classification in cardiac MRI" @default.
- W2930763511 cites W1963932623 @default.
- W2930763511 cites W1973391164 @default.
- W2930763511 cites W1982405594 @default.
- W2930763511 cites W1989986853 @default.
- W2930763511 cites W1990402720 @default.
- W2930763511 cites W2002012991 @default.
- W2930763511 cites W2005945933 @default.
- W2930763511 cites W2013753130 @default.
- W2930763511 cites W2027340342 @default.
- W2930763511 cites W2037664838 @default.
- W2930763511 cites W2037696125 @default.
- W2930763511 cites W2048022758 @default.
- W2930763511 cites W2053934116 @default.
- W2930763511 cites W2100042440 @default.
- W2930763511 cites W2101675075 @default.
- W2930763511 cites W2129812935 @default.
- W2930763511 cites W2130683228 @default.
- W2930763511 cites W2131303968 @default.
- W2930763511 cites W2132401137 @default.
- W2930763511 cites W2135421452 @default.
- W2930763511 cites W2148584846 @default.
- W2930763511 cites W2149264191 @default.
- W2930763511 cites W2149309532 @default.
- W2930763511 cites W2157012957 @default.
- W2930763511 cites W2157264444 @default.
- W2930763511 cites W2162911128 @default.
- W2930763511 cites W2163398148 @default.
- W2930763511 cites W2164548992 @default.
- W2930763511 cites W2745174553 @default.
- W2930763511 doi "https://doi.org/10.1016/j.eswa.2019.04.010" @default.
- W2930763511 hasPublicationYear "2019" @default.
- W2930763511 type Work @default.
- W2930763511 sameAs 2930763511 @default.
- W2930763511 citedByCount "6" @default.
- W2930763511 countsByYear W29307635112020 @default.
- W2930763511 countsByYear W29307635112021 @default.
- W2930763511 countsByYear W29307635112022 @default.
- W2930763511 crossrefType "journal-article" @default.
- W2930763511 hasAuthorship W2930763511A5012367599 @default.
- W2930763511 hasAuthorship W2930763511A5023712545 @default.
- W2930763511 hasAuthorship W2930763511A5028310780 @default.
- W2930763511 hasAuthorship W2930763511A5028937897 @default.
- W2930763511 hasAuthorship W2930763511A5053127930 @default.
- W2930763511 hasAuthorship W2930763511A5076298725 @default.
- W2930763511 hasBestOaLocation W29307635111 @default.
- W2930763511 hasConcept C104114177 @default.
- W2930763511 hasConcept C124504099 @default.
- W2930763511 hasConcept C126838900 @default.
- W2930763511 hasConcept C143409427 @default.
- W2930763511 hasConcept C153180895 @default.
- W2930763511 hasConcept C154945302 @default.
- W2930763511 hasConcept C164705383 @default.
- W2930763511 hasConcept C31601959 @default.
- W2930763511 hasConcept C31972630 @default.
- W2930763511 hasConcept C41008148 @default.
- W2930763511 hasConcept C71924100 @default.
- W2930763511 hasConcept C89600930 @default.
- W2930763511 hasConcept C97931131 @default.
- W2930763511 hasConcept C99398487 @default.
- W2930763511 hasConceptScore W2930763511C104114177 @default.
- W2930763511 hasConceptScore W2930763511C124504099 @default.
- W2930763511 hasConceptScore W2930763511C126838900 @default.
- W2930763511 hasConceptScore W2930763511C143409427 @default.
- W2930763511 hasConceptScore W2930763511C153180895 @default.
- W2930763511 hasConceptScore W2930763511C154945302 @default.
- W2930763511 hasConceptScore W2930763511C164705383 @default.
- W2930763511 hasConceptScore W2930763511C31601959 @default.
- W2930763511 hasConceptScore W2930763511C31972630 @default.
- W2930763511 hasConceptScore W2930763511C41008148 @default.
- W2930763511 hasConceptScore W2930763511C71924100 @default.
- W2930763511 hasConceptScore W2930763511C89600930 @default.
- W2930763511 hasConceptScore W2930763511C97931131 @default.
- W2930763511 hasConceptScore W2930763511C99398487 @default.
- W2930763511 hasFunder F4320333065 @default.
- W2930763511 hasLocation W29307635111 @default.
- W2930763511 hasLocation W29307635112 @default.
- W2930763511 hasLocation W29307635113 @default.
- W2930763511 hasLocation W29307635114 @default.
- W2930763511 hasOpenAccess W2930763511 @default.
- W2930763511 hasPrimaryLocation W29307635111 @default.
- W2930763511 hasRelatedWork W1669643531 @default.
- W2930763511 hasRelatedWork W2005437358 @default.
- W2930763511 hasRelatedWork W2024160000 @default.
- W2930763511 hasRelatedWork W2061273563 @default.
- W2930763511 hasRelatedWork W2517104666 @default.
- W2930763511 hasRelatedWork W2729514902 @default.
- W2930763511 hasRelatedWork W2743258233 @default.