Matches in SemOpenAlex for { <https://semopenalex.org/work/W2931088924> ?p ?o ?g. }
- W2931088924 abstract "For almost 10 years, the detection of a message hidden in an image has been mainly carried out by the computation of a Rich Model (RM), followed by a classification by an Ensemble Classifier (EC). In 2015, the first study using a convolutional neural network (CNN) obtained the first results of steganalysis by Deep Learning approaching the results of two-step approaches (EC + RM). Therefore, over the 2015-2018 period, numerous publications have shown that it is possible to obtain better performances notably in spatial steganalysis, in JPEG steganalysis, in Selection-Channel-Aware steganalysis, in quantitative steganalysis. This chapter deals with deep learning in steganalysis from the point of view of the existing, by presenting the different neural networks that have been evaluated with a methodology specific to the discipline of steganalysis, and this during the period 2015-2018. The chapter is not intended to repeat the basic concepts of machine learning or deep learning. We will thus give in a generic way the structure of a deep neural network, we will present the networks proposed in the literature for the different scenarios of steganalysis, and finally, we will discuss steganography by GAN." @default.
- W2931088924 created "2019-04-11" @default.
- W2931088924 creator A5050689933 @default.
- W2931088924 date "2019-04-02" @default.
- W2931088924 modified "2023-09-23" @default.
- W2931088924 title "Deep Learning in steganography and steganalysis from 2015 to 2018." @default.
- W2931088924 cites W1583407400 @default.
- W2931088924 cites W1604614341 @default.
- W2931088924 cites W1713630528 @default.
- W2931088924 cites W1836465849 @default.
- W2931088924 cites W1955882805 @default.
- W2931088924 cites W1976570511 @default.
- W2931088924 cites W1981386223 @default.
- W2931088924 cites W1981833647 @default.
- W2931088924 cites W2002029921 @default.
- W2931088924 cites W2006286269 @default.
- W2931088924 cites W2009130368 @default.
- W2931088924 cites W2030323340 @default.
- W2931088924 cites W2032317389 @default.
- W2931088924 cites W2036904261 @default.
- W2931088924 cites W2040299224 @default.
- W2931088924 cites W2041356996 @default.
- W2931088924 cites W2041651059 @default.
- W2931088924 cites W2044610626 @default.
- W2931088924 cites W2045110448 @default.
- W2931088924 cites W2055625960 @default.
- W2931088924 cites W2063442212 @default.
- W2931088924 cites W2081564928 @default.
- W2931088924 cites W2096156898 @default.
- W2931088924 cites W2097117768 @default.
- W2931088924 cites W2099471712 @default.
- W2931088924 cites W2100495367 @default.
- W2931088924 cites W2101954717 @default.
- W2931088924 cites W2104705565 @default.
- W2931088924 cites W2109255472 @default.
- W2931088924 cites W2109440474 @default.
- W2931088924 cites W2124664712 @default.
- W2931088924 cites W2134527668 @default.
- W2931088924 cites W2136744314 @default.
- W2931088924 cites W2156722235 @default.
- W2931088924 cites W2163605009 @default.
- W2931088924 cites W2163922914 @default.
- W2931088924 cites W2165049148 @default.
- W2931088924 cites W2170311913 @default.
- W2931088924 cites W2170598445 @default.
- W2931088924 cites W2192227561 @default.
- W2931088924 cites W2194775991 @default.
- W2931088924 cites W22271197 @default.
- W2931088924 cites W2274856082 @default.
- W2931088924 cites W2283907002 @default.
- W2931088924 cites W2322622188 @default.
- W2931088924 cites W2339370745 @default.
- W2931088924 cites W2411903621 @default.
- W2931088924 cites W2412509443 @default.
- W2931088924 cites W2473333187 @default.
- W2931088924 cites W2514127746 @default.
- W2931088924 cites W2531409750 @default.
- W2931088924 cites W2538511122 @default.
- W2931088924 cites W2539219033 @default.
- W2931088924 cites W2542290803 @default.
- W2931088924 cites W2545241995 @default.
- W2931088924 cites W2545316382 @default.
- W2931088924 cites W2546197734 @default.
- W2931088924 cites W2565257220 @default.
- W2931088924 cites W2579698629 @default.
- W2931088924 cites W2605121773 @default.
- W2931088924 cites W2610979719 @default.
- W2931088924 cites W2621048556 @default.
- W2931088924 cites W2735904389 @default.
- W2931088924 cites W2736102651 @default.
- W2931088924 cites W2736148246 @default.
- W2931088924 cites W2749193951 @default.
- W2931088924 cites W2751202750 @default.
- W2931088924 cites W2775461895 @default.
- W2931088924 cites W2789647542 @default.
- W2931088924 cites W2791370475 @default.
- W2931088924 cites W2799785652 @default.
- W2931088924 cites W2809287426 @default.
- W2931088924 cites W2809534270 @default.
- W2931088924 cites W2860433205 @default.
- W2931088924 cites W2888845754 @default.
- W2931088924 cites W2889206230 @default.
- W2931088924 cites W2892948265 @default.
- W2931088924 cites W2902620118 @default.
- W2931088924 cites W2920862986 @default.
- W2931088924 cites W2957604207 @default.
- W2931088924 cites W2958123781 @default.
- W2931088924 cites W2960139675 @default.
- W2931088924 cites W2960934316 @default.
- W2931088924 cites W2962269719 @default.
- W2931088924 cites W2962274287 @default.
- W2931088924 cites W2962746461 @default.
- W2931088924 cites W2962835968 @default.
- W2931088924 cites W2963682422 @default.
- W2931088924 cites W2963684088 @default.
- W2931088924 cites W2963821229 @default.
- W2931088924 cites W2963957509 @default.
- W2931088924 cites W2964121744 @default.
- W2931088924 cites W2964267196 @default.
- W2931088924 cites W2966791305 @default.