Matches in SemOpenAlex for { <https://semopenalex.org/work/W2931270890> ?p ?o ?g. }
- W2931270890 endingPage "035001" @default.
- W2931270890 startingPage "035001" @default.
- W2931270890 abstract "Abstract The identification of mixtures of particles in a solution via analysis of scattered light can be a complex task, due to the multiple scattering effects between different sizes and types of particles. Deep learning offers the capability for solving complex problems without the need for a physical understanding of the underlying system, and hence offers an elegant solution. Here, we demonstrate the application of convolutional neural networks for the identification of the concentration of microparticles (silicon dioxide and melamine resin) and the solution salinity, directly from the scattered light. The measurements were carried out in real-time using a Raspberry Pi, light source, camera, and neural network computation, hence demonstrating a portable and low-cost environmental marine sensor." @default.
- W2931270890 created "2019-04-11" @default.
- W2931270890 creator A5000953647 @default.
- W2931270890 creator A5016209195 @default.
- W2931270890 creator A5055964296 @default.
- W2931270890 creator A5071168623 @default.
- W2931270890 creator A5072408376 @default.
- W2931270890 creator A5080337562 @default.
- W2931270890 creator A5081631274 @default.
- W2931270890 creator A5089120111 @default.
- W2931270890 creator A5091710257 @default.
- W2931270890 date "2019-04-01" @default.
- W2931270890 modified "2023-09-30" @default.
- W2931270890 title "Particle and salinity sensing for the marine environment via deep learning using a Raspberry Pi" @default.
- W2931270890 cites W1935508795 @default.
- W2931270890 cites W1970121793 @default.
- W2931270890 cites W1977325657 @default.
- W2931270890 cites W1980327002 @default.
- W2931270890 cites W1981644934 @default.
- W2931270890 cites W1984380191 @default.
- W2931270890 cites W1985492666 @default.
- W2931270890 cites W1999798805 @default.
- W2931270890 cites W2000201528 @default.
- W2931270890 cites W2007918089 @default.
- W2931270890 cites W2008618623 @default.
- W2931270890 cites W2027494760 @default.
- W2931270890 cites W2033557854 @default.
- W2931270890 cites W2034685809 @default.
- W2931270890 cites W2048773714 @default.
- W2931270890 cites W2067678611 @default.
- W2931270890 cites W2069157258 @default.
- W2931270890 cites W2076442087 @default.
- W2931270890 cites W2078953638 @default.
- W2931270890 cites W2081456960 @default.
- W2931270890 cites W2085831882 @default.
- W2931270890 cites W2088897029 @default.
- W2931270890 cites W2091186532 @default.
- W2931270890 cites W2098905619 @default.
- W2931270890 cites W2100495367 @default.
- W2931270890 cites W2103449823 @default.
- W2931270890 cites W2120956595 @default.
- W2931270890 cites W2130707940 @default.
- W2931270890 cites W2134877526 @default.
- W2931270890 cites W2149723649 @default.
- W2931270890 cites W2150186479 @default.
- W2931270890 cites W2150503350 @default.
- W2931270890 cites W2164526292 @default.
- W2931270890 cites W2188948147 @default.
- W2931270890 cites W2202290360 @default.
- W2931270890 cites W2217896605 @default.
- W2931270890 cites W2255762950 @default.
- W2931270890 cites W2302517508 @default.
- W2931270890 cites W2323827474 @default.
- W2931270890 cites W2329639071 @default.
- W2931270890 cites W2331382441 @default.
- W2931270890 cites W2339108085 @default.
- W2931270890 cites W2344283116 @default.
- W2931270890 cites W2401212536 @default.
- W2931270890 cites W2419559816 @default.
- W2931270890 cites W2523958115 @default.
- W2931270890 cites W2524362342 @default.
- W2931270890 cites W2586703361 @default.
- W2931270890 cites W2589934064 @default.
- W2931270890 cites W2612688942 @default.
- W2931270890 cites W2614949728 @default.
- W2931270890 cites W2618530766 @default.
- W2931270890 cites W2621638375 @default.
- W2931270890 cites W2735425621 @default.
- W2931270890 cites W2742616117 @default.
- W2931270890 cites W2748498801 @default.
- W2931270890 cites W2752665592 @default.
- W2931270890 cites W2753427988 @default.
- W2931270890 cites W2786630352 @default.
- W2931270890 cites W2788112641 @default.
- W2931270890 cites W2793237457 @default.
- W2931270890 cites W2797890682 @default.
- W2931270890 cites W2809096091 @default.
- W2931270890 cites W2889053548 @default.
- W2931270890 cites W2889784985 @default.
- W2931270890 cites W2898523550 @default.
- W2931270890 cites W2899509354 @default.
- W2931270890 cites W2900667960 @default.
- W2931270890 cites W2919115771 @default.
- W2931270890 cites W2963698847 @default.
- W2931270890 cites W4253463170 @default.
- W2931270890 doi "https://doi.org/10.1088/2515-7620/ab14c9" @default.
- W2931270890 hasPublicationYear "2019" @default.
- W2931270890 type Work @default.
- W2931270890 sameAs 2931270890 @default.
- W2931270890 citedByCount "19" @default.
- W2931270890 countsByYear W29312708902019 @default.
- W2931270890 countsByYear W29312708902020 @default.
- W2931270890 countsByYear W29312708902021 @default.
- W2931270890 countsByYear W29312708902022 @default.
- W2931270890 countsByYear W29312708902023 @default.
- W2931270890 crossrefType "journal-article" @default.
- W2931270890 hasAuthorship W2931270890A5000953647 @default.
- W2931270890 hasAuthorship W2931270890A5016209195 @default.