Matches in SemOpenAlex for { <https://semopenalex.org/work/W2931858164> ?p ?o ?g. }
- W2931858164 abstract "Low-dose CT denoising is a challenging task that has been studied by many researchers. Some studies have used deep neural networks to improve the quality of low-dose CT images and achieved fruitful results. In this paper, we propose a deep neural network that uses dilated convolutions with different dilation rates instead of standard convolution helping to capture more contextual information in fewer layers. Also, we have employed residual learning by creating shortcut connections to transmit image information from the early layers to later ones. To further improve the performance of the network, we have introduced a non-trainable edge detection layer that extracts edges in horizontal, vertical, and diagonal directions. Finally, we demonstrate that optimizing the network by a combination of mean-square error loss and perceptual loss preserves many structural details in the CT image. This objective function does not suffer from over smoothing and blurring effects caused by per-pixel loss and grid-like artifacts resulting from perceptual loss. The experiments show that each modification to the network improves the outcome while only minimally changing the complexity of the network." @default.
- W2931858164 created "2019-04-11" @default.
- W2931858164 creator A5017986343 @default.
- W2931858164 creator A5060493690 @default.
- W2931858164 creator A5086896369 @default.
- W2931858164 date "2019-02-25" @default.
- W2931858164 modified "2023-10-14" @default.
- W2931858164 title "Deep Learning for Low-Dose CT Denoising" @default.
- W2931858164 cites W1533861849 @default.
- W2931858164 cites W1686810756 @default.
- W2931858164 cites W1710476689 @default.
- W2931858164 cites W1990919544 @default.
- W2931858164 cites W2004703305 @default.
- W2931858164 cites W2021954169 @default.
- W2931858164 cites W2042743306 @default.
- W2931858164 cites W2042776093 @default.
- W2931858164 cites W2056370875 @default.
- W2931858164 cites W2069410412 @default.
- W2931858164 cites W2083927153 @default.
- W2931858164 cites W2097073572 @default.
- W2931858164 cites W2108598243 @default.
- W2931858164 cites W2118902776 @default.
- W2931858164 cites W2138553139 @default.
- W2931858164 cites W2141689871 @default.
- W2931858164 cites W2142884793 @default.
- W2931858164 cites W2143163922 @default.
- W2931858164 cites W2160547390 @default.
- W2931858164 cites W2194775991 @default.
- W2931858164 cites W2286929393 @default.
- W2931858164 cites W2331128040 @default.
- W2931858164 cites W2508457857 @default.
- W2931858164 cites W2511730936 @default.
- W2931858164 cites W2570202822 @default.
- W2931858164 cites W2592048188 @default.
- W2931858164 cites W2617128058 @default.
- W2931858164 cites W2748739903 @default.
- W2931858164 cites W2753887715 @default.
- W2931858164 cites W2764292908 @default.
- W2931858164 cites W2898641073 @default.
- W2931858164 cites W2949099979 @default.
- W2931858164 cites W2949117887 @default.
- W2931858164 cites W2949999304 @default.
- W2931858164 cites W2951070760 @default.
- W2931858164 cites W2963470893 @default.
- W2931858164 cites W626427215 @default.
- W2931858164 hasPublicationYear "2019" @default.
- W2931858164 type Work @default.
- W2931858164 sameAs 2931858164 @default.
- W2931858164 citedByCount "0" @default.
- W2931858164 crossrefType "posted-content" @default.
- W2931858164 hasAuthorship W2931858164A5017986343 @default.
- W2931858164 hasAuthorship W2931858164A5060493690 @default.
- W2931858164 hasAuthorship W2931858164A5086896369 @default.
- W2931858164 hasConcept C105795698 @default.
- W2931858164 hasConcept C108583219 @default.
- W2931858164 hasConcept C11413529 @default.
- W2931858164 hasConcept C114614502 @default.
- W2931858164 hasConcept C115961682 @default.
- W2931858164 hasConcept C130367717 @default.
- W2931858164 hasConcept C138885662 @default.
- W2931858164 hasConcept C139945424 @default.
- W2931858164 hasConcept C153180895 @default.
- W2931858164 hasConcept C154945302 @default.
- W2931858164 hasConcept C155512373 @default.
- W2931858164 hasConcept C156140930 @default.
- W2931858164 hasConcept C160633673 @default.
- W2931858164 hasConcept C162307627 @default.
- W2931858164 hasConcept C163294075 @default.
- W2931858164 hasConcept C187691185 @default.
- W2931858164 hasConcept C2524010 @default.
- W2931858164 hasConcept C2776401178 @default.
- W2931858164 hasConcept C2780757906 @default.
- W2931858164 hasConcept C31972630 @default.
- W2931858164 hasConcept C33923547 @default.
- W2931858164 hasConcept C3770464 @default.
- W2931858164 hasConcept C41008148 @default.
- W2931858164 hasConcept C41895202 @default.
- W2931858164 hasConcept C45347329 @default.
- W2931858164 hasConcept C50644808 @default.
- W2931858164 hasConcept C55020928 @default.
- W2931858164 hasConceptScore W2931858164C105795698 @default.
- W2931858164 hasConceptScore W2931858164C108583219 @default.
- W2931858164 hasConceptScore W2931858164C11413529 @default.
- W2931858164 hasConceptScore W2931858164C114614502 @default.
- W2931858164 hasConceptScore W2931858164C115961682 @default.
- W2931858164 hasConceptScore W2931858164C130367717 @default.
- W2931858164 hasConceptScore W2931858164C138885662 @default.
- W2931858164 hasConceptScore W2931858164C139945424 @default.
- W2931858164 hasConceptScore W2931858164C153180895 @default.
- W2931858164 hasConceptScore W2931858164C154945302 @default.
- W2931858164 hasConceptScore W2931858164C155512373 @default.
- W2931858164 hasConceptScore W2931858164C156140930 @default.
- W2931858164 hasConceptScore W2931858164C160633673 @default.
- W2931858164 hasConceptScore W2931858164C162307627 @default.
- W2931858164 hasConceptScore W2931858164C163294075 @default.
- W2931858164 hasConceptScore W2931858164C187691185 @default.
- W2931858164 hasConceptScore W2931858164C2524010 @default.
- W2931858164 hasConceptScore W2931858164C2776401178 @default.
- W2931858164 hasConceptScore W2931858164C2780757906 @default.
- W2931858164 hasConceptScore W2931858164C31972630 @default.