Matches in SemOpenAlex for { <https://semopenalex.org/work/W2932005953> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2932005953 endingPage "183" @default.
- W2932005953 startingPage "173" @default.
- W2932005953 abstract "Even in a context of rapidly evolving transportation and information technologies, household travel surveys remain an essential source of information for transportation planning. Moreover, as planning authorities become increasingly concerned with reducing the use of the private car, travelers’ mode choice patterns should be reexamined. In this study, a machine learning algorithm (Random Forest) was employed to characterize the use of eight different travel modes observed in two consecutive household travel surveys undertaken in Montreal, Canada. The analysis incorporated roughly 160,000 observed trips. The Random Forest algorithm was trained on the 2008 survey data and applied to the 2013 survey. The usefulness of the algorithm was evaluated using two numerical representations: the confusion matrix and the importance matrix. The results of this evaluation showed that the Random Forest algorithm could generate a detailed and precise characterization of travel submarkets for four of the most commonly observed modes of travel (auto-drive, public transit, school bus, and walk) using 11 attributes of households, persons, and trips. However, the auto-passenger mode was difficult to characterize because of its dependence on unobserved intra-household interactions. The algorithm also had difficulty identifying users of rarely observed modes (park-and-ride, kiss-and-ride, bicycle), but performed better in this regard than a traditional mode choice model. Finally, traveler’s age and the spatial orientation of origin–destination pairs were found to be decisive factors in the use of the auto-drive mode. This finding, combined with the stability of mode choice patterns observed over 5 years, highlights the difficulty of significantly reducing automobile use." @default.
- W2932005953 created "2019-04-11" @default.
- W2932005953 creator A5047994584 @default.
- W2932005953 creator A5067534688 @default.
- W2932005953 creator A5085464148 @default.
- W2932005953 date "2019-04-01" @default.
- W2932005953 modified "2023-09-25" @default.
- W2932005953 title "Application of Machine Learning to Two Large-Sample Household Travel Surveys: A Characterization of Travel Modes" @default.
- W2932005953 cites W1827495041 @default.
- W2932005953 cites W2158804744 @default.
- W2932005953 cites W2587802550 @default.
- W2932005953 cites W2911964244 @default.
- W2932005953 cites W3102027041 @default.
- W2932005953 doi "https://doi.org/10.1177/0361198119839339" @default.
- W2932005953 hasPublicationYear "2019" @default.
- W2932005953 type Work @default.
- W2932005953 sameAs 2932005953 @default.
- W2932005953 citedByCount "15" @default.
- W2932005953 countsByYear W29320059532021 @default.
- W2932005953 countsByYear W29320059532022 @default.
- W2932005953 countsByYear W29320059532023 @default.
- W2932005953 crossrefType "journal-article" @default.
- W2932005953 hasAuthorship W2932005953A5047994584 @default.
- W2932005953 hasAuthorship W2932005953A5067534688 @default.
- W2932005953 hasAuthorship W2932005953A5085464148 @default.
- W2932005953 hasConcept C111919701 @default.
- W2932005953 hasConcept C119857082 @default.
- W2932005953 hasConcept C127413603 @default.
- W2932005953 hasConcept C138602881 @default.
- W2932005953 hasConcept C144072006 @default.
- W2932005953 hasConcept C144133560 @default.
- W2932005953 hasConcept C157085824 @default.
- W2932005953 hasConcept C162853370 @default.
- W2932005953 hasConcept C166957645 @default.
- W2932005953 hasConcept C169258074 @default.
- W2932005953 hasConcept C185592680 @default.
- W2932005953 hasConcept C198531522 @default.
- W2932005953 hasConcept C205649164 @default.
- W2932005953 hasConcept C22212356 @default.
- W2932005953 hasConcept C2776017872 @default.
- W2932005953 hasConcept C2778384698 @default.
- W2932005953 hasConcept C2779343474 @default.
- W2932005953 hasConcept C39118121 @default.
- W2932005953 hasConcept C41008148 @default.
- W2932005953 hasConcept C43617362 @default.
- W2932005953 hasConcept C48677424 @default.
- W2932005953 hasConcept C539828613 @default.
- W2932005953 hasConceptScore W2932005953C111919701 @default.
- W2932005953 hasConceptScore W2932005953C119857082 @default.
- W2932005953 hasConceptScore W2932005953C127413603 @default.
- W2932005953 hasConceptScore W2932005953C138602881 @default.
- W2932005953 hasConceptScore W2932005953C144072006 @default.
- W2932005953 hasConceptScore W2932005953C144133560 @default.
- W2932005953 hasConceptScore W2932005953C157085824 @default.
- W2932005953 hasConceptScore W2932005953C162853370 @default.
- W2932005953 hasConceptScore W2932005953C166957645 @default.
- W2932005953 hasConceptScore W2932005953C169258074 @default.
- W2932005953 hasConceptScore W2932005953C185592680 @default.
- W2932005953 hasConceptScore W2932005953C198531522 @default.
- W2932005953 hasConceptScore W2932005953C205649164 @default.
- W2932005953 hasConceptScore W2932005953C22212356 @default.
- W2932005953 hasConceptScore W2932005953C2776017872 @default.
- W2932005953 hasConceptScore W2932005953C2778384698 @default.
- W2932005953 hasConceptScore W2932005953C2779343474 @default.
- W2932005953 hasConceptScore W2932005953C39118121 @default.
- W2932005953 hasConceptScore W2932005953C41008148 @default.
- W2932005953 hasConceptScore W2932005953C43617362 @default.
- W2932005953 hasConceptScore W2932005953C48677424 @default.
- W2932005953 hasConceptScore W2932005953C539828613 @default.
- W2932005953 hasIssue "4" @default.
- W2932005953 hasLocation W29320059531 @default.
- W2932005953 hasOpenAccess W2932005953 @default.
- W2932005953 hasPrimaryLocation W29320059531 @default.
- W2932005953 hasRelatedWork W1604690511 @default.
- W2932005953 hasRelatedWork W201063967 @default.
- W2932005953 hasRelatedWork W2174428593 @default.
- W2932005953 hasRelatedWork W2384678397 @default.
- W2932005953 hasRelatedWork W2474784816 @default.
- W2932005953 hasRelatedWork W2932005953 @default.
- W2932005953 hasRelatedWork W2939957412 @default.
- W2932005953 hasRelatedWork W623680660 @default.
- W2932005953 hasRelatedWork W632276570 @default.
- W2932005953 hasRelatedWork W3014859018 @default.
- W2932005953 hasVolume "2673" @default.
- W2932005953 isParatext "false" @default.
- W2932005953 isRetracted "false" @default.
- W2932005953 magId "2932005953" @default.
- W2932005953 workType "article" @default.