Matches in SemOpenAlex for { <https://semopenalex.org/work/W2932293043> ?p ?o ?g. }
- W2932293043 endingPage "91" @default.
- W2932293043 startingPage "81" @default.
- W2932293043 abstract "Abstract Finding clusters in high dimensional data is a challenging research problem. Subspace clustering algorithms aim to find clusters in all possible subspaces of the dataset, where a subspace is a subset of dimensions of the data. But the exponential increase in the number of subspaces with the dimensionality of data renders most of the algorithms inefficient as well as ineffective. Moreover, these algorithms have ingrained data dependency in the clustering process, which means that parallelization becomes difficult and inefficient. SUBSCALE is a recent subspace clustering algorithm which is scalable with the dimensions and contains independent processing steps which can be exploited through parallelism. In this paper, we aim to leverage the computational power of widely available multi-core processors to improve the runtime performance of the SUBSCALE algorithm. The experimental evaluation shows linear speedup. Moreover, we develop an approach using graphics processing units (GPUs) for fine-grained data parallelism to accelerate the computation further. First tests of the GPU implementation show very promising results." @default.
- W2932293043 created "2019-04-11" @default.
- W2932293043 creator A5004492374 @default.
- W2932293043 creator A5005705210 @default.
- W2932293043 creator A5022240667 @default.
- W2932293043 creator A5033054432 @default.
- W2932293043 date "2019-03-01" @default.
- W2932293043 modified "2023-10-16" @default.
- W2932293043 title "Exploiting multi–core and many–core parallelism for subspace clustering" @default.
- W2932293043 cites W1128809682 @default.
- W2932293043 cites W1501500081 @default.
- W2932293043 cites W1507901999 @default.
- W2932293043 cites W1562753845 @default.
- W2932293043 cites W1599794708 @default.
- W2932293043 cites W191006456 @default.
- W2932293043 cites W1988888548 @default.
- W2932293043 cites W1992419399 @default.
- W2932293043 cites W1993962865 @default.
- W2932293043 cites W1999705173 @default.
- W2932293043 cites W2006533296 @default.
- W2932293043 cites W2042035594 @default.
- W2932293043 cites W2065811242 @default.
- W2932293043 cites W2079361215 @default.
- W2932293043 cites W2114060717 @default.
- W2932293043 cites W2115579991 @default.
- W2932293043 cites W2116324873 @default.
- W2932293043 cites W2116838486 @default.
- W2932293043 cites W2140736261 @default.
- W2932293043 cites W2140942285 @default.
- W2932293043 cites W2141807666 @default.
- W2932293043 cites W2145638 @default.
- W2932293043 cites W2149373142 @default.
- W2932293043 cites W2153233077 @default.
- W2932293043 cites W2222257513 @default.
- W2932293043 cites W2549056440 @default.
- W2932293043 cites W2751518852 @default.
- W2932293043 cites W3003734944 @default.
- W2932293043 cites W4250689175 @default.
- W2932293043 doi "https://doi.org/10.2478/amcs-2019-0006" @default.
- W2932293043 hasPublicationYear "2019" @default.
- W2932293043 type Work @default.
- W2932293043 sameAs 2932293043 @default.
- W2932293043 citedByCount "3" @default.
- W2932293043 countsByYear W29322930432020 @default.
- W2932293043 countsByYear W29322930432021 @default.
- W2932293043 crossrefType "journal-article" @default.
- W2932293043 hasAuthorship W2932293043A5004492374 @default.
- W2932293043 hasAuthorship W2932293043A5005705210 @default.
- W2932293043 hasAuthorship W2932293043A5022240667 @default.
- W2932293043 hasAuthorship W2932293043A5033054432 @default.
- W2932293043 hasBestOaLocation W29322930431 @default.
- W2932293043 hasConcept C111030470 @default.
- W2932293043 hasConcept C11413529 @default.
- W2932293043 hasConcept C12362212 @default.
- W2932293043 hasConcept C153083717 @default.
- W2932293043 hasConcept C154945302 @default.
- W2932293043 hasConcept C173608175 @default.
- W2932293043 hasConcept C2524010 @default.
- W2932293043 hasConcept C2781172179 @default.
- W2932293043 hasConcept C32834561 @default.
- W2932293043 hasConcept C33923547 @default.
- W2932293043 hasConcept C41008148 @default.
- W2932293043 hasConcept C48044578 @default.
- W2932293043 hasConcept C61483411 @default.
- W2932293043 hasConcept C68339613 @default.
- W2932293043 hasConcept C73555534 @default.
- W2932293043 hasConcept C77088390 @default.
- W2932293043 hasConcept C78766204 @default.
- W2932293043 hasConcept C80444323 @default.
- W2932293043 hasConceptScore W2932293043C111030470 @default.
- W2932293043 hasConceptScore W2932293043C11413529 @default.
- W2932293043 hasConceptScore W2932293043C12362212 @default.
- W2932293043 hasConceptScore W2932293043C153083717 @default.
- W2932293043 hasConceptScore W2932293043C154945302 @default.
- W2932293043 hasConceptScore W2932293043C173608175 @default.
- W2932293043 hasConceptScore W2932293043C2524010 @default.
- W2932293043 hasConceptScore W2932293043C2781172179 @default.
- W2932293043 hasConceptScore W2932293043C32834561 @default.
- W2932293043 hasConceptScore W2932293043C33923547 @default.
- W2932293043 hasConceptScore W2932293043C41008148 @default.
- W2932293043 hasConceptScore W2932293043C48044578 @default.
- W2932293043 hasConceptScore W2932293043C61483411 @default.
- W2932293043 hasConceptScore W2932293043C68339613 @default.
- W2932293043 hasConceptScore W2932293043C73555534 @default.
- W2932293043 hasConceptScore W2932293043C77088390 @default.
- W2932293043 hasConceptScore W2932293043C78766204 @default.
- W2932293043 hasConceptScore W2932293043C80444323 @default.
- W2932293043 hasIssue "1" @default.
- W2932293043 hasLocation W29322930431 @default.
- W2932293043 hasOpenAccess W2932293043 @default.
- W2932293043 hasPrimaryLocation W29322930431 @default.
- W2932293043 hasRelatedWork W1509593372 @default.
- W2932293043 hasRelatedWork W1595151633 @default.
- W2932293043 hasRelatedWork W1929858018 @default.
- W2932293043 hasRelatedWork W2002601993 @default.
- W2932293043 hasRelatedWork W2074226157 @default.
- W2932293043 hasRelatedWork W2366027386 @default.
- W2932293043 hasRelatedWork W2378666660 @default.