Matches in SemOpenAlex for { <https://semopenalex.org/work/W2932464630> ?p ?o ?g. }
- W2932464630 endingPage "122" @default.
- W2932464630 startingPage "113" @default.
- W2932464630 abstract "Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either measured on the ground or inferred from satellite-retrieved aerosol optical depth (AOD). The latter is subject to numerous sources of errors, making the satellite retrievals of PM2.5 highly uncertain. This study developed an ensemble machine-learning (ML) algorithm for estimating PM2.5 concentration directly from Advanced Himawari Imager satellite measured top-of-the-atmosphere (TOA) reflectances in 2016 integrated with meteorological parameters. The algorithm is demonstrated to perform well across China with high accuracies at different temporal scales. The model has an overall cross-validation coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 17.3 μg m−3 for hourly PM2.5 concentration estimation. Such accuracies of the estimation on PM2.5 concentration by using TOA reflectance directly are comparable with those of the common methods on estimating PM2.5 concentration by using satellite-derived AODs, but the former has a relatively stronger predictive power relating to spatial-temporal coverages than the latter. Annual and seasonal variations of PM2.5 concentration over three major the developed regions in China are estimated using the model and analyzed. The relatively stronger predictive ability of developed model in this study may help provide information about the diurnal cycle of PM2.5 concentrations as well as aid in monitoring the processes of regional pollution episodes and the evolution of PM2.5 concentration." @default.
- W2932464630 created "2019-04-11" @default.
- W2932464630 creator A5037950211 @default.
- W2932464630 creator A5048705310 @default.
- W2932464630 creator A5075662908 @default.
- W2932464630 date "2019-07-01" @default.
- W2932464630 modified "2023-10-16" @default.
- W2932464630 title "Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm" @default.
- W2932464630 cites W1173523477 @default.
- W2932464630 cites W1746274139 @default.
- W2932464630 cites W1968840994 @default.
- W2932464630 cites W1980891198 @default.
- W2932464630 cites W1987337512 @default.
- W2932464630 cites W2018630616 @default.
- W2932464630 cites W2031528200 @default.
- W2932464630 cites W2031675844 @default.
- W2932464630 cites W2054806977 @default.
- W2932464630 cites W2057392978 @default.
- W2932464630 cites W2057532702 @default.
- W2932464630 cites W2069977802 @default.
- W2932464630 cites W2083944525 @default.
- W2932464630 cites W2084341220 @default.
- W2932464630 cites W2090436332 @default.
- W2932464630 cites W2096118432 @default.
- W2932464630 cites W2103977502 @default.
- W2932464630 cites W2107045929 @default.
- W2932464630 cites W2112335693 @default.
- W2932464630 cites W2119362352 @default.
- W2932464630 cites W2119744638 @default.
- W2932464630 cites W2136811230 @default.
- W2932464630 cites W2141970008 @default.
- W2932464630 cites W2143481518 @default.
- W2932464630 cites W2145971409 @default.
- W2932464630 cites W2161669929 @default.
- W2932464630 cites W2166525661 @default.
- W2932464630 cites W2233873426 @default.
- W2932464630 cites W2252305884 @default.
- W2932464630 cites W2284873887 @default.
- W2932464630 cites W2297827415 @default.
- W2932464630 cites W2312602772 @default.
- W2932464630 cites W2313649188 @default.
- W2932464630 cites W2314479789 @default.
- W2932464630 cites W2480175994 @default.
- W2932464630 cites W2516758599 @default.
- W2932464630 cites W2518779081 @default.
- W2932464630 cites W2519497602 @default.
- W2932464630 cites W2567586762 @default.
- W2932464630 cites W2579955828 @default.
- W2932464630 cites W2588978790 @default.
- W2932464630 cites W2620300958 @default.
- W2932464630 cites W2737242952 @default.
- W2932464630 cites W2742024368 @default.
- W2932464630 cites W2742946820 @default.
- W2932464630 cites W2763686595 @default.
- W2932464630 cites W2784188108 @default.
- W2932464630 cites W2791696953 @default.
- W2932464630 cites W2900379721 @default.
- W2932464630 cites W2913323966 @default.
- W2932464630 cites W3122817556 @default.
- W2932464630 cites W590735017 @default.
- W2932464630 doi "https://doi.org/10.1016/j.atmosenv.2019.04.002" @default.
- W2932464630 hasPublicationYear "2019" @default.
- W2932464630 type Work @default.
- W2932464630 sameAs 2932464630 @default.
- W2932464630 citedByCount "55" @default.
- W2932464630 countsByYear W29324646302019 @default.
- W2932464630 countsByYear W29324646302020 @default.
- W2932464630 countsByYear W29324646302021 @default.
- W2932464630 countsByYear W29324646302022 @default.
- W2932464630 countsByYear W29324646302023 @default.
- W2932464630 crossrefType "journal-article" @default.
- W2932464630 hasAuthorship W2932464630A5037950211 @default.
- W2932464630 hasAuthorship W2932464630A5048705310 @default.
- W2932464630 hasAuthorship W2932464630A5075662908 @default.
- W2932464630 hasConcept C105795698 @default.
- W2932464630 hasConcept C11413529 @default.
- W2932464630 hasConcept C127313418 @default.
- W2932464630 hasConcept C127413603 @default.
- W2932464630 hasConcept C139945424 @default.
- W2932464630 hasConcept C146978453 @default.
- W2932464630 hasConcept C153294291 @default.
- W2932464630 hasConcept C178790620 @default.
- W2932464630 hasConcept C185592680 @default.
- W2932464630 hasConcept C19269812 @default.
- W2932464630 hasConcept C205649164 @default.
- W2932464630 hasConcept C24245907 @default.
- W2932464630 hasConcept C2779345167 @default.
- W2932464630 hasConcept C33923547 @default.
- W2932464630 hasConcept C39432304 @default.
- W2932464630 hasConcept C41008148 @default.
- W2932464630 hasConcept C62649853 @default.
- W2932464630 hasConcept C63991900 @default.
- W2932464630 hasConcept C65440619 @default.
- W2932464630 hasConcept C91586092 @default.
- W2932464630 hasConceptScore W2932464630C105795698 @default.
- W2932464630 hasConceptScore W2932464630C11413529 @default.
- W2932464630 hasConceptScore W2932464630C127313418 @default.
- W2932464630 hasConceptScore W2932464630C127413603 @default.