Matches in SemOpenAlex for { <https://semopenalex.org/work/W2932700025> ?p ?o ?g. }
- W2932700025 endingPage "17" @default.
- W2932700025 startingPage "1" @default.
- W2932700025 abstract "Fossil pollen assemblages can assist in understanding biome responses to global climate change if there is reasonable probability that they represent specific biomes or bioregions. In this paper, we introduce a novel probabilistic presentation of pollen data and biome assignment. We apply a recently developed pollen-based vegetation classification method utilizing supervised machine learning to Southern Africa modern pollen assemblages. We present an updated modern pollen dataset from Southern Africa, linking the sites to previously defined vegetation units and, ultimately, we generate probabilistic classification for fossil assemblages to reconstruct past vegetation. The modern pollen dataset (N = 211 sites) represents a long vegetation gradient, from desert to forest biomes, capturing broad climate gradients ranging from arid to subtropical. We validate two models using Random Forest algorithm to classify modern vegetation at different spatial resolutions: subcontinental (biomes) and regional (bioregions). When the modern pollen assemblages (N = 164 sites) are used to predict the vegetation types, the classification models are correct in a number of cases. In our dataset of 164 sites, the classification model correctly classifies pollen assemblages from savanna (91% correct), grassland (87%), and coastal forest (82%) vegetation types, while the best results for classification of regional vegetation are achieved for sub-humid savanna (95%), dry savanna (95%), coastal forest (91%), and wet grassland (90%). We apply the models to a fossil pollen sequence at Wonderkrater in the South African savanna, to reconstruct subcontinental and regional changes in past vegetation states over the last 60 000 years. The most probable vegetation state dominating the region since the Late Pleistocene is sub-humid savanna yet grassland occurred at times associated with high vegetation variability. Within the record, the most frequent and amplified variability in the inferred vegetation states occurred during the transitional phase between the Late Pleistocene and the Holocene. The machine learning approach for reconstructing past vegetation, offers a more complex and nuanced view of past vegetation dynamics and has the potential to support quantitative proxy-based techniques for palaeoclimatic reconstructions." @default.
- W2932700025 created "2019-04-11" @default.
- W2932700025 creator A5000617630 @default.
- W2932700025 creator A5020991628 @default.
- W2932700025 creator A5059682921 @default.
- W2932700025 date "2019-05-01" @default.
- W2932700025 modified "2023-10-18" @default.
- W2932700025 title "Reconstructing past biomes states using machine learning and modern pollen assemblages: A case study from Southern Africa" @default.
- W2932700025 cites W1155120022 @default.
- W2932700025 cites W1504309558 @default.
- W2932700025 cites W1551921606 @default.
- W2932700025 cites W1689144894 @default.
- W2932700025 cites W1871310204 @default.
- W2932700025 cites W1973512097 @default.
- W2932700025 cites W1985307591 @default.
- W2932700025 cites W1998564344 @default.
- W2932700025 cites W1999963944 @default.
- W2932700025 cites W2004134315 @default.
- W2932700025 cites W2009339135 @default.
- W2932700025 cites W2011139340 @default.
- W2932700025 cites W2013878295 @default.
- W2932700025 cites W2020403517 @default.
- W2932700025 cites W2024487921 @default.
- W2932700025 cites W2028449747 @default.
- W2932700025 cites W2031840889 @default.
- W2932700025 cites W2034878206 @default.
- W2932700025 cites W2037321678 @default.
- W2932700025 cites W2046480131 @default.
- W2932700025 cites W2048839121 @default.
- W2932700025 cites W2049478303 @default.
- W2932700025 cites W2051559013 @default.
- W2932700025 cites W2078087758 @default.
- W2932700025 cites W2079264499 @default.
- W2932700025 cites W2079586996 @default.
- W2932700025 cites W2081473530 @default.
- W2932700025 cites W2084428435 @default.
- W2932700025 cites W2089607710 @default.
- W2932700025 cites W2094560824 @default.
- W2932700025 cites W2098000995 @default.
- W2932700025 cites W2098039753 @default.
- W2932700025 cites W2098964970 @default.
- W2932700025 cites W2099358694 @default.
- W2932700025 cites W2102301972 @default.
- W2932700025 cites W2103589610 @default.
- W2932700025 cites W2104968988 @default.
- W2932700025 cites W2110116713 @default.
- W2932700025 cites W2115867758 @default.
- W2932700025 cites W2130877451 @default.
- W2932700025 cites W2138007700 @default.
- W2932700025 cites W2139086914 @default.
- W2932700025 cites W2140630023 @default.
- W2932700025 cites W2142851677 @default.
- W2932700025 cites W2143010926 @default.
- W2932700025 cites W2153322439 @default.
- W2932700025 cites W2172296038 @default.
- W2932700025 cites W2182526330 @default.
- W2932700025 cites W2330427464 @default.
- W2932700025 cites W2335794514 @default.
- W2932700025 cites W2412043355 @default.
- W2932700025 cites W2473658880 @default.
- W2932700025 cites W2494246574 @default.
- W2932700025 cites W2496750717 @default.
- W2932700025 cites W2531841534 @default.
- W2932700025 cites W2570613877 @default.
- W2932700025 cites W2611481875 @default.
- W2932700025 cites W2747570977 @default.
- W2932700025 cites W2888623041 @default.
- W2932700025 cites W2894503713 @default.
- W2932700025 cites W4232297496 @default.
- W2932700025 cites W4246027503 @default.
- W2932700025 doi "https://doi.org/10.1016/j.quascirev.2019.03.027" @default.
- W2932700025 hasPublicationYear "2019" @default.
- W2932700025 type Work @default.
- W2932700025 sameAs 2932700025 @default.
- W2932700025 citedByCount "13" @default.
- W2932700025 countsByYear W29327000252019 @default.
- W2932700025 countsByYear W29327000252021 @default.
- W2932700025 countsByYear W29327000252022 @default.
- W2932700025 countsByYear W29327000252023 @default.
- W2932700025 crossrefType "journal-article" @default.
- W2932700025 hasAuthorship W2932700025A5000617630 @default.
- W2932700025 hasAuthorship W2932700025A5020991628 @default.
- W2932700025 hasAuthorship W2932700025A5059682921 @default.
- W2932700025 hasConcept C100970517 @default.
- W2932700025 hasConcept C110872660 @default.
- W2932700025 hasConcept C142724271 @default.
- W2932700025 hasConcept C18903297 @default.
- W2932700025 hasConcept C205649164 @default.
- W2932700025 hasConcept C2775835988 @default.
- W2932700025 hasConcept C2776054349 @default.
- W2932700025 hasConcept C2776133958 @default.
- W2932700025 hasConcept C2780618852 @default.
- W2932700025 hasConcept C50660011 @default.
- W2932700025 hasConcept C71924100 @default.
- W2932700025 hasConcept C86803240 @default.
- W2932700025 hasConcept C89920630 @default.
- W2932700025 hasConcept C91492127 @default.
- W2932700025 hasConceptScore W2932700025C100970517 @default.