Matches in SemOpenAlex for { <https://semopenalex.org/work/W2932806871> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2932806871 endingPage "56" @default.
- W2932806871 startingPage "56" @default.
- W2932806871 abstract "Galileo’s Parabola describing the projectile motion passed through hands of all scholars of the classical mechanics. Therefore, it seems to be impossible to bring to this topic anything new. In our approach we will observe the Galileo’s Parabola from Pappus’ Directrix, Apollonius’ Pedal Curve (Line), Galileo’s Empty Focus, Newton’s Evolute, Leibniz’s Subtangent and Subnormal, Ptolemy’s Circle (Hodograph), and Dürer-Simon Parabola. For the description of events on this Galileo’s Parabola (this conic section parabola was discovered by Menaechmus) we will employ the interplay of the directrix of parabola discovered by Pappus of Alexandria, the pedal curve with the pedal point in the focus discovered by Apollonius of Perga (The Great Geometer), and the Galileo’s empty focus that plays an important function, too. We will study properties of this MAG Parabola with the aim to extract some hidden parameters behind that visible parabolic orbit in the Aristotelian World. For the visible Galileo’s Parabola in the Aristotelian World, there might be hidden curves in the Plato’s Realm behind the mechanism of that Parabola. The analysis of these curves could reveal to us hidden properties describing properties of that projectile motion. The parabolic path of the projectile motion can be described by six expressions of projectile speeds. In the Dürer-Simon’s Parabola we have determined tangential and normal accelerations with resulting acceleration g = 9.81 msec-2 directing towards to Galileo’s empty focus for the projectile moving to the vertex of that Parabola. When the projectile moves away from the vertex the resulting acceleration g = 9.81 msec-2 directs to the center of the Earth (the second focus of Galileo’s Parabola in the “infinity”). We have extracted some additional properties of Galileo’s Parabola. E.g., the Newtonian school correctly used the expression for “kinetic energy E = ½ mv2 for parabolic orbits and paths, while the Leibnizian school correctly used the expression for “vis viva” E = mv2 for hyperbolic orbits and paths. If we will insert the “vis viva” expression into the Soldner’s formula (1801) (e.g., Fengyi Huang in 2017), then we will get the right experimental value for the deflection of light on hyperbolic orbits. In the Plato’s Realm some other curves might be hidden and have been waiting for our future research. Have we found the Arriadne’s Thread leading out of the Labyrinth or are we still lost in the Labyrinth?" @default.
- W2932806871 created "2019-04-11" @default.
- W2932806871 creator A5044891361 @default.
- W2932806871 date "2019-03-30" @default.
- W2932806871 modified "2023-10-14" @default.
- W2932806871 title "Galileo’s Parabola Observed from Pappus’ Directrix, Apollonius’ Pedal Curve (Line), Galileo’s Empty Focus, Newton’s Evolute, Leibniz’s Subtangent and Subnormal, Ptolemy’s Circle (Hodograph), and Dürer-Simon Parabola (16.03.2019)" @default.
- W2932806871 cites W1504615552 @default.
- W2932806871 cites W1532275399 @default.
- W2932806871 cites W1667311302 @default.
- W2932806871 cites W1966347377 @default.
- W2932806871 cites W2004539049 @default.
- W2932806871 cites W2010127396 @default.
- W2932806871 cites W2054597602 @default.
- W2932806871 cites W2118681410 @default.
- W2932806871 cites W2336122406 @default.
- W2932806871 cites W2346669570 @default.
- W2932806871 cites W2524287351 @default.
- W2932806871 cites W2766057016 @default.
- W2932806871 cites W2884052947 @default.
- W2932806871 cites W2903030543 @default.
- W2932806871 cites W2907627353 @default.
- W2932806871 cites W3007833553 @default.
- W2932806871 cites W37032343 @default.
- W2932806871 cites W591138658 @default.
- W2932806871 cites W642242442 @default.
- W2932806871 doi "https://doi.org/10.5539/apr.v11n2p56" @default.
- W2932806871 hasPublicationYear "2019" @default.
- W2932806871 type Work @default.
- W2932806871 sameAs 2932806871 @default.
- W2932806871 citedByCount "0" @default.
- W2932806871 crossrefType "journal-article" @default.
- W2932806871 hasAuthorship W2932806871A5044891361 @default.
- W2932806871 hasBestOaLocation W29328068711 @default.
- W2932806871 hasConcept C121332964 @default.
- W2932806871 hasConcept C127313418 @default.
- W2932806871 hasConcept C13280743 @default.
- W2932806871 hasConcept C177219330 @default.
- W2932806871 hasConcept C205890394 @default.
- W2932806871 hasConcept C2524010 @default.
- W2932806871 hasConcept C33923547 @default.
- W2932806871 hasConceptScore W2932806871C121332964 @default.
- W2932806871 hasConceptScore W2932806871C127313418 @default.
- W2932806871 hasConceptScore W2932806871C13280743 @default.
- W2932806871 hasConceptScore W2932806871C177219330 @default.
- W2932806871 hasConceptScore W2932806871C205890394 @default.
- W2932806871 hasConceptScore W2932806871C2524010 @default.
- W2932806871 hasConceptScore W2932806871C33923547 @default.
- W2932806871 hasIssue "2" @default.
- W2932806871 hasLocation W29328068711 @default.
- W2932806871 hasOpenAccess W2932806871 @default.
- W2932806871 hasPrimaryLocation W29328068711 @default.
- W2932806871 hasRelatedWork W122483812 @default.
- W2932806871 hasRelatedWork W152771814 @default.
- W2932806871 hasRelatedWork W2043274803 @default.
- W2932806871 hasRelatedWork W2055410097 @default.
- W2932806871 hasRelatedWork W2811281073 @default.
- W2932806871 hasRelatedWork W2932806871 @default.
- W2932806871 hasRelatedWork W2935759653 @default.
- W2932806871 hasRelatedWork W3105167352 @default.
- W2932806871 hasRelatedWork W4246232768 @default.
- W2932806871 hasRelatedWork W54078636 @default.
- W2932806871 hasVolume "11" @default.
- W2932806871 isParatext "false" @default.
- W2932806871 isRetracted "false" @default.
- W2932806871 magId "2932806871" @default.
- W2932806871 workType "article" @default.