Matches in SemOpenAlex for { <https://semopenalex.org/work/W2932853679> ?p ?o ?g. }
- W2932853679 endingPage "9229" @default.
- W2932853679 startingPage "9217" @default.
- W2932853679 abstract "The effective detoxification of chemical warfare agents, specifically nerve agents, is a pressing issue in the modern world. Due to the high toxicity of these molecules, simulants are often used in experiments as substitutes for the agents. However, there is little reason to believe that the current simulants used in the literature are optimal predictors of nerve agent reactivity. Density functional theory calculations were performed on the alkaline hydrolysis of over 100 organophosphate molecules to identify improved simulants for the G-series nerve agents soman and sarin, based on low toxicity and similarity to nerve agent hydrolysis energetics and degradation mechanism. This screening highlighted 5 molecules that have nearly identical reaction barriers to the actual agents, while being far less toxic. Quantitative structure–activity relationship (QSAR) models were also derived to determine the most significant molecular descriptors for describing the hydrolysis free energy barriers of these reactions. The optimal QSAR model was subjected to a thorough statistical analysis and validation procedure to confirm its predictive capacity, showing excellent quantitative and ranking accuracy. It was further shown that the model trained on G-series agents can reliably predict energetics for other organophosphate classes as well, including VX. Through these computational insights, experimentalists may be aided in accurately and safely studying these reactions with less toxic simulants." @default.
- W2932853679 created "2019-04-11" @default.
- W2932853679 creator A5019016673 @default.
- W2932853679 creator A5034380467 @default.
- W2932853679 date "2019-05-27" @default.
- W2932853679 modified "2023-09-23" @default.
- W2932853679 title "Screening for Improved Nerve Agent Simulants and Insights into Organophosphate Hydrolysis Reactions from DFT and QSAR Modeling" @default.
- W2932853679 cites W1571439140 @default.
- W2932853679 cites W1965119905 @default.
- W2932853679 cites W1965173894 @default.
- W2932853679 cites W1969202901 @default.
- W2932853679 cites W1969595639 @default.
- W2932853679 cites W1975743199 @default.
- W2932853679 cites W1977295445 @default.
- W2932853679 cites W1994372519 @default.
- W2932853679 cites W1995608522 @default.
- W2932853679 cites W2001128531 @default.
- W2932853679 cites W2004226047 @default.
- W2932853679 cites W2004815619 @default.
- W2932853679 cites W2012956828 @default.
- W2932853679 cites W2015271274 @default.
- W2932853679 cites W2021229217 @default.
- W2932853679 cites W2023271753 @default.
- W2932853679 cites W2028054907 @default.
- W2932853679 cites W2028117546 @default.
- W2932853679 cites W2028203732 @default.
- W2932853679 cites W2028781077 @default.
- W2932853679 cites W2029867653 @default.
- W2932853679 cites W2039750430 @default.
- W2932853679 cites W2041805632 @default.
- W2932853679 cites W2044394227 @default.
- W2932853679 cites W2044940178 @default.
- W2932853679 cites W2051682290 @default.
- W2932853679 cites W2057540004 @default.
- W2932853679 cites W2059560227 @default.
- W2932853679 cites W2069203035 @default.
- W2932853679 cites W2069771769 @default.
- W2932853679 cites W2071150793 @default.
- W2932853679 cites W2071800578 @default.
- W2932853679 cites W2086190989 @default.
- W2932853679 cites W2086505034 @default.
- W2932853679 cites W2087661061 @default.
- W2932853679 cites W2092157292 @default.
- W2932853679 cites W2092965486 @default.
- W2932853679 cites W2095474273 @default.
- W2932853679 cites W2096747776 @default.
- W2932853679 cites W2112964229 @default.
- W2932853679 cites W2113860761 @default.
- W2932853679 cites W2138133206 @default.
- W2932853679 cites W2143981217 @default.
- W2932853679 cites W2150697053 @default.
- W2932853679 cites W2205150625 @default.
- W2932853679 cites W2278623434 @default.
- W2932853679 cites W2294467502 @default.
- W2932853679 cites W2321772707 @default.
- W2932853679 cites W2325339829 @default.
- W2932853679 cites W2408063792 @default.
- W2932853679 cites W2408778720 @default.
- W2932853679 cites W2466657211 @default.
- W2932853679 cites W2479889539 @default.
- W2932853679 cites W2517373925 @default.
- W2932853679 cites W2534019799 @default.
- W2932853679 cites W2559850253 @default.
- W2932853679 cites W2562136744 @default.
- W2932853679 cites W2599379284 @default.
- W2932853679 cites W2604706483 @default.
- W2932853679 cites W2605849292 @default.
- W2932853679 cites W2740875536 @default.
- W2932853679 cites W2755898939 @default.
- W2932853679 cites W2792093157 @default.
- W2932853679 cites W2792600740 @default.
- W2932853679 cites W2800352845 @default.
- W2932853679 cites W2804094004 @default.
- W2932853679 cites W2895808191 @default.
- W2932853679 cites W3139928502 @default.
- W2932853679 cites W4213102329 @default.
- W2932853679 cites W4231986739 @default.
- W2932853679 cites W4239576086 @default.
- W2932853679 cites W4247461827 @default.
- W2932853679 cites W2113808415 @default.
- W2932853679 doi "https://doi.org/10.1002/chem.201900655" @default.
- W2932853679 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30924220" @default.
- W2932853679 hasPublicationYear "2019" @default.
- W2932853679 type Work @default.
- W2932853679 sameAs 2932853679 @default.
- W2932853679 citedByCount "24" @default.
- W2932853679 countsByYear W29328536792019 @default.
- W2932853679 countsByYear W29328536792020 @default.
- W2932853679 countsByYear W29328536792021 @default.
- W2932853679 countsByYear W29328536792022 @default.
- W2932853679 countsByYear W29328536792023 @default.
- W2932853679 crossrefType "journal-article" @default.
- W2932853679 hasAuthorship W2932853679A5019016673 @default.
- W2932853679 hasAuthorship W2932853679A5034380467 @default.
- W2932853679 hasConcept C127413603 @default.
- W2932853679 hasConcept C147597530 @default.
- W2932853679 hasConcept C161176658 @default.
- W2932853679 hasConcept C164126121 @default.