Matches in SemOpenAlex for { <https://semopenalex.org/work/W2933176268> ?p ?o ?g. }
- W2933176268 endingPage "46" @default.
- W2933176268 startingPage "23" @default.
- W2933176268 abstract "This chapter proposes an efficient hybrid training technique (ALOMLP) based on the Ant Lion Optimizer (ALO) to be utilized in dealing with Multi-Layer Perceptrons (MLPs) neural networks. ALO is a well-regarded swarm-based meta-heuristic inspired by the intelligent hunting tricks of antlions in nature. In this chapter, the theoretical backgrounds of ALO are explained in details first. Then, a comprehensive literature review is provided based on recent well-established works from 2015 to 2018. In addition, a convenient encoding scheme is presented and the objective formula is defined, mathematically. The proposed training model based on ALO algorithm is substantiated on sixteen standard datasets. The efficiency of ALO is compared with differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO), and population-based incremental learning (PBIL) in terms of best, worst, average, and median accuracies. Furthermore, the convergence propensities are monitored and analyzed for all competitors. The experiments show that the ALOMLP outperforms GA, PBIL, DE, and PSO in classifying the majority of datasets and provides improved accuracy results and convergence rates." @default.
- W2933176268 created "2019-04-11" @default.
- W2933176268 creator A5023882029 @default.
- W2933176268 creator A5028441474 @default.
- W2933176268 creator A5035499884 @default.
- W2933176268 creator A5048560390 @default.
- W2933176268 creator A5091500375 @default.
- W2933176268 date "2019-02-02" @default.
- W2933176268 modified "2023-10-01" @default.
- W2933176268 title "Ant Lion Optimizer: Theory, Literature Review, and Application in Multi-layer Perceptron Neural Networks" @default.
- W2933176268 cites W1490180010 @default.
- W2933176268 cites W1529965533 @default.
- W2933176268 cites W1534473561 @default.
- W2933176268 cites W1546636571 @default.
- W2933176268 cites W1777985119 @default.
- W2933176268 cites W1798761835 @default.
- W2933176268 cites W1866429230 @default.
- W2933176268 cites W1954476676 @default.
- W2933176268 cites W1967025894 @default.
- W2933176268 cites W1969680573 @default.
- W2933176268 cites W1971259134 @default.
- W2933176268 cites W1973757115 @default.
- W2933176268 cites W1978506732 @default.
- W2933176268 cites W1995341919 @default.
- W2933176268 cites W1996688253 @default.
- W2933176268 cites W2001979953 @default.
- W2933176268 cites W2002302337 @default.
- W2933176268 cites W2002959904 @default.
- W2933176268 cites W200738318 @default.
- W2933176268 cites W2021309800 @default.
- W2933176268 cites W2028031385 @default.
- W2933176268 cites W2031014442 @default.
- W2933176268 cites W2036220573 @default.
- W2933176268 cites W2051680981 @default.
- W2933176268 cites W2062848325 @default.
- W2933176268 cites W2067878879 @default.
- W2933176268 cites W2070448096 @default.
- W2933176268 cites W2079143456 @default.
- W2933176268 cites W2095473347 @default.
- W2933176268 cites W2103496339 @default.
- W2933176268 cites W2103717170 @default.
- W2933176268 cites W2138537392 @default.
- W2933176268 cites W2151554678 @default.
- W2933176268 cites W2165301864 @default.
- W2933176268 cites W2168294619 @default.
- W2933176268 cites W2216979581 @default.
- W2933176268 cites W2287324317 @default.
- W2933176268 cites W2290402024 @default.
- W2933176268 cites W2293925160 @default.
- W2933176268 cites W2296662953 @default.
- W2933176268 cites W2320665255 @default.
- W2933176268 cites W2336163323 @default.
- W2933176268 cites W2336419546 @default.
- W2933176268 cites W2401135312 @default.
- W2933176268 cites W2461302873 @default.
- W2933176268 cites W2462057288 @default.
- W2933176268 cites W2481453975 @default.
- W2933176268 cites W2498631495 @default.
- W2933176268 cites W2506542142 @default.
- W2933176268 cites W2515658545 @default.
- W2933176268 cites W2516969599 @default.
- W2933176268 cites W2521164685 @default.
- W2933176268 cites W2541011702 @default.
- W2933176268 cites W2550636676 @default.
- W2933176268 cites W2550768464 @default.
- W2933176268 cites W2554038470 @default.
- W2933176268 cites W2555334091 @default.
- W2933176268 cites W2581082771 @default.
- W2933176268 cites W2587345921 @default.
- W2933176268 cites W2589083458 @default.
- W2933176268 cites W2609031355 @default.
- W2933176268 cites W2613854265 @default.
- W2933176268 cites W2732796807 @default.
- W2933176268 cites W2737177700 @default.
- W2933176268 cites W2739315187 @default.
- W2933176268 cites W2740495692 @default.
- W2933176268 cites W2742961367 @default.
- W2933176268 cites W2743043759 @default.
- W2933176268 cites W2753628308 @default.
- W2933176268 cites W2754507236 @default.
- W2933176268 cites W2766225302 @default.
- W2933176268 cites W2766515761 @default.
- W2933176268 cites W2770544385 @default.
- W2933176268 cites W2782061276 @default.
- W2933176268 cites W2784834174 @default.
- W2933176268 cites W2790206699 @default.
- W2933176268 cites W2796319428 @default.
- W2933176268 cites W2799795201 @default.
- W2933176268 cites W2801536506 @default.
- W2933176268 cites W2802182459 @default.
- W2933176268 cites W2803633353 @default.
- W2933176268 cites W2883013658 @default.
- W2933176268 cites W2885770227 @default.
- W2933176268 cites W2898813896 @default.
- W2933176268 cites W2899250423 @default.
- W2933176268 cites W2914128779 @default.
- W2933176268 cites W3157207671 @default.
- W2933176268 cites W4236245180 @default.