Matches in SemOpenAlex for { <https://semopenalex.org/work/W2933871838> ?p ?o ?g. }
- W2933871838 endingPage "2012" @default.
- W2933871838 startingPage "2001" @default.
- W2933871838 abstract "Spontaneous activity is a common feature of immature neuronal networks throughout the central nervous system and plays an important role in network development and consolidation. In postnatal rodents, spontaneous activity in the spinal cord exhibits complex, stochastic patterns that have historically proven challenging to characterize. We developed a software tool for quickly and automatically characterizing and classifying episodes of spontaneous activity generated from developing spinal networks. We recorded spontaneous activity from in vitro lumbar ventral roots of 16 neonatal [postnatal day (P)0-P3] mice. Recordings were DC coupled and detrended, and episodes were separated for analysis. Amplitude-, duration-, and frequency-related features were extracted from each episode and organized into five classes. Paired classes and features were used to train and test supervised machine learning algorithms. Multilayer perceptrons were used to classify episodes as rhythmic or multiburst. We increased network excitability with potassium chloride and tested the utility of the tool to detect changes in features and episode class. We also demonstrate usability by having a novel experimenter use the program to classify episodes collected at a later time point (P5). Supervised machine learning-based classification of episodes accounted for changes that traditional approaches cannot detect. Our tool, named SpontaneousClassification, advances the detail in which we can study not only developing spinal networks, but also spontaneous networks in other areas of the nervous system. NEW & NOTEWORTHY Spontaneous activity is important for nervous system network development and consolidation. Our software uses machine learning to automatically and quickly characterize and classify episodes of spontaneous activity in the spinal cord of newborn mice. It detected changes in network activity following KCl-enhanced excitation. Using our software to classify spontaneous activity throughout development, in pathological models, or with neuromodulation, may offer insight into the development and organization of spinal circuits." @default.
- W2933871838 created "2019-04-11" @default.
- W2933871838 creator A5001350743 @default.
- W2933871838 creator A5005377186 @default.
- W2933871838 creator A5008344008 @default.
- W2933871838 creator A5036733857 @default.
- W2933871838 creator A5063414990 @default.
- W2933871838 date "2019-06-01" @default.
- W2933871838 modified "2023-10-16" @default.
- W2933871838 title "A supervised machine learning approach to characterize spinal network function" @default.
- W2933871838 cites W1496317877 @default.
- W2933871838 cites W1632057558 @default.
- W2933871838 cites W1865573163 @default.
- W2933871838 cites W1971504855 @default.
- W2933871838 cites W1989032179 @default.
- W2933871838 cites W1995831611 @default.
- W2933871838 cites W1998379602 @default.
- W2933871838 cites W1998674325 @default.
- W2933871838 cites W2000364692 @default.
- W2933871838 cites W2005791255 @default.
- W2933871838 cites W2018065157 @default.
- W2933871838 cites W2019773173 @default.
- W2933871838 cites W2035082412 @default.
- W2933871838 cites W2037950501 @default.
- W2933871838 cites W2043279954 @default.
- W2933871838 cites W2045528648 @default.
- W2933871838 cites W2056523469 @default.
- W2933871838 cites W2061740650 @default.
- W2933871838 cites W2063766414 @default.
- W2933871838 cites W2063903639 @default.
- W2933871838 cites W2068467384 @default.
- W2933871838 cites W2072244168 @default.
- W2933871838 cites W2075166267 @default.
- W2933871838 cites W2076042602 @default.
- W2933871838 cites W2076163730 @default.
- W2933871838 cites W2077862802 @default.
- W2933871838 cites W2081834473 @default.
- W2933871838 cites W2101970831 @default.
- W2933871838 cites W2119119716 @default.
- W2933871838 cites W2133530044 @default.
- W2933871838 cites W2133759406 @default.
- W2933871838 cites W2137730912 @default.
- W2933871838 cites W2144686729 @default.
- W2933871838 cites W2155142277 @default.
- W2933871838 cites W2160815625 @default.
- W2933871838 cites W2169480040 @default.
- W2933871838 cites W2171406132 @default.
- W2933871838 cites W2179247331 @default.
- W2933871838 cites W2183448948 @default.
- W2933871838 cites W2191752401 @default.
- W2933871838 cites W2217400584 @default.
- W2933871838 cites W2289996588 @default.
- W2933871838 cites W2325939864 @default.
- W2933871838 cites W2332297550 @default.
- W2933871838 cites W237925087 @default.
- W2933871838 cites W2518582440 @default.
- W2933871838 cites W2532509415 @default.
- W2933871838 cites W2574106805 @default.
- W2933871838 cites W2759932154 @default.
- W2933871838 cites W2762081760 @default.
- W2933871838 cites W2792983091 @default.
- W2933871838 cites W2800850596 @default.
- W2933871838 cites W2933871838 @default.
- W2933871838 cites W4247665364 @default.
- W2933871838 doi "https://doi.org/10.1152/jn.00763.2018" @default.
- W2933871838 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6620704" @default.
- W2933871838 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30943091" @default.
- W2933871838 hasPublicationYear "2019" @default.
- W2933871838 type Work @default.
- W2933871838 sameAs 2933871838 @default.
- W2933871838 citedByCount "9" @default.
- W2933871838 countsByYear W29338718382019 @default.
- W2933871838 countsByYear W29338718382020 @default.
- W2933871838 countsByYear W29338718382022 @default.
- W2933871838 crossrefType "journal-article" @default.
- W2933871838 hasAuthorship W2933871838A5001350743 @default.
- W2933871838 hasAuthorship W2933871838A5005377186 @default.
- W2933871838 hasAuthorship W2933871838A5008344008 @default.
- W2933871838 hasAuthorship W2933871838A5036733857 @default.
- W2933871838 hasAuthorship W2933871838A5063414990 @default.
- W2933871838 hasBestOaLocation W29338718381 @default.
- W2933871838 hasConcept C119857082 @default.
- W2933871838 hasConcept C153180895 @default.
- W2933871838 hasConcept C154945302 @default.
- W2933871838 hasConcept C15744967 @default.
- W2933871838 hasConcept C169760540 @default.
- W2933871838 hasConcept C41008148 @default.
- W2933871838 hasConcept C50644808 @default.
- W2933871838 hasConceptScore W2933871838C119857082 @default.
- W2933871838 hasConceptScore W2933871838C153180895 @default.
- W2933871838 hasConceptScore W2933871838C154945302 @default.
- W2933871838 hasConceptScore W2933871838C15744967 @default.
- W2933871838 hasConceptScore W2933871838C169760540 @default.
- W2933871838 hasConceptScore W2933871838C41008148 @default.
- W2933871838 hasConceptScore W2933871838C50644808 @default.
- W2933871838 hasFunder F4320313243 @default.
- W2933871838 hasFunder F4320334593 @default.
- W2933871838 hasIssue "6" @default.